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1 The Tweedie-Power Variance Function Family

1.1 Introduction
Readers who have worked with GLMs will recall seeing an exhibit in the documentation for
their software similar to Table 1. It shows the univariate exponential family distributions
with a power variance function (PVF)

𝑉 (𝜇) = 𝜇𝑝,

for different values of 𝑝. This section will answer several questions raised by the table:
Why do these distributions appear? Why are they in this order? What about 0 < 𝑝 < 1
or 𝑝 > 2 or even 𝑝 < 0? And, what ties all of these distributions together?

Table 1: Exponential families with PVFs.

Distribution Name Variance Function 𝑉 (𝜇)

Normal 1
Poisson 𝜇
Tweedie 𝜇𝑝, 1 < 𝑝 < 2
Gamma 𝜇2

Inverse Gaussian 𝜇3

This section begins by identifying all PVF distributions from their cumulant generating
functions. In the process, it shows that the Tweedie family is a compound Poisson with
gamma severity and identifies the Lévy measure that underlies the PVF family. In
conjunction with the Tweedie limit theorem at the end of Part III, this measure can be
regarded as a kind of universal severity distribution. The section goes on to show
how the Tweedie interpolates between diversifying and non-diversifying growth models
and concludes by illustrating the range of shapes its density can take.

1.2 Identifying All Members of The Power Variance Family
For any NEF we know 𝜅′(𝜃) = 𝜏(𝜃) = 𝜇 and 𝜅″(𝜃) = 𝜏 ′(𝜏−1(𝜇)) = 1/(𝜏−1)′(𝜇)) = 𝑉 (𝜇),
by the results in Part II. For the power variance family, we can integrate (𝜏−1)′(𝜇) =
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1/𝑉 (𝜇) = 𝜇−𝑝 to get

𝜃 = 𝜏−1(𝜇) = 𝜇1−𝑝

1 − 𝑝
,

provided 𝑝 ≠ 1. Rearranging determines

𝜅′(𝜃) = 𝜇 = {(1 − 𝑝)𝜃}
1

1−𝑝 .

We can integrate this expression for 𝜅′(𝜃) and, for 𝑝 ≠ 2, obtain

𝜅(𝜃) = (1 − 𝑝)
1

1−𝑝 𝜃
2−𝑝
1−𝑝 /2 − 𝑝

1 − 𝑝

= (1 − 𝑝)
2−𝑝
1−𝑝

𝜃
2−𝑝
1−𝑝

2 − 𝑝

= 1
2 − 𝑝

{(1 − 𝑝)𝜃}
2−𝑝
1−𝑝

since 1
1−𝑝 + 1 = 2−𝑝

1−𝑝 . Substituting 𝛼 = 2−𝑝
1−𝑝 , and noting 𝑝 = 𝛼−2

𝛼−1 , 1 − 𝑝 = 1
𝛼−1 , and

1
2−𝑝 = 𝛼−1

𝛼 , yields

𝜅(𝜃) = 𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

.

For reference, the most basic stable distribution with tail parameter 𝛼 has cumulant
generating function −𝛾|𝜃|𝛼 for a scale constant 𝛾, which has the same form.

The two excluded cases, 𝑝 = 1, 2, work out as follows. When 𝑝 = 1, 𝛼 = ∞. The first
integral yields 𝜃 = log(𝜇) and the second 𝜅(𝜃) = 𝑒𝜃, giving a Poisson. And when 𝑝 = 2,
𝛼 = 0. The first integral yields 𝜃 = −𝜇−1 and the second 𝜅(𝜃) = − log(−𝜇), giving a
gamma.

One further case will occur, which in a sense corresponds to 𝑝 = ∞. It turns out the
correct interpretation is 𝑉 (𝜇) = 𝑒𝜇. Then, the first integral yields 𝜃 = −𝑒−𝜇 and the
second 𝜅(𝜃) = 𝜃 − 𝜃 log(−𝜃). This will give an extreme Cauchy distribution.

To summarize: the cumulant generator for the power variance family is given by

𝜅𝑝(𝜃) =

⎧{{{
⎨{{{⎩

𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

𝑝 ≠ 1, 2; 𝛼 = 2−𝑝
1−𝑝

𝑒𝜃 𝑝 = 1; 𝛼 = ∞
− log(−𝜃) 𝑝 = 2; 𝛼 = 0.
𝜃 − 𝜃 log(−𝜃) 𝑝 = ∞; 𝛼 = 1

where the subscript indicates dependence on 𝑝. The normal, 𝛼 = 2, 𝑝 = 0 is a special
case of the first row.

The canonical parameter domain Θ𝑝 is the largest interval real numbers for which 𝜅𝑝(𝜃)
is finite. Therefore

Θ𝑝 =

⎧
{{{
⎨
{{{
⎩

(−∞, ∞) 𝑝 = 0, 𝛼 = 2; 𝑝 = 1, 𝛼 = ∞
[0, ∞) 𝑝 < 0, 1 < 𝛼 < 2; 0 < 𝑝 < 1, 𝛼 > 2
(−∞, 0) 1 < 𝑝 ≤ 2, 𝛼 ≤ 0
(−∞, 0] 2 < 𝑝 < ∞; 0 < 𝛼 < 1
(−∞, 0] 𝑝 = ∞; 𝛼 = 1.
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In the last row we allow 𝜃 = 0 because lim𝜃↑0 −𝜃 log(−𝜃) = 0.

In general, a member of the NEF generated by 𝑉 has cumulant generating function
𝐾𝜃(𝑡) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃). Assuming 𝑝 ≠ 1, 2 and substituting for 𝜅 produces

𝐾𝜃(𝑡) = 𝛼 − 1
𝛼

{( 𝜃 + 𝑡
𝛼 − 1

)
𝛼

− ( 𝜃
𝛼 − 1

)
𝛼

}

= 𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

{(1 + 𝑡
𝜃

)
𝛼

− 1} .

Which distributions correspond to these cumulant generating functions? We distinguish
the following situations:

1. when 0 ∉ Θ𝑝 we identify 𝐾𝜃, and
2. when 0 ∈ Θ𝑝 we identify 𝐾0(𝑡) = 𝜅(𝑡), with sub-cases:

i. the normal and Poisson, where 0 is in the interior of Θ𝑝 and
ii. the second, fourth and fifth rows where 0 is a boundary point of Θ𝑝. These

NEFs are not regular and 𝜃 = 0 corresponds to a distribution with infinite
mean that is not part of the family1.

Figure 1 provides a handy reference of the relationship between 𝑝 and −𝛼 and the
corresponding distributions. The analysis below is ordered by 𝛼 (along the 𝑥-axis),
starting with 𝛼 = 2, the normal.
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Figure 1: The power variance families: 𝑝 plotted against −𝛼. Horizontal color bars
indicate range of −𝛼 values for extreme stable (−2 < −𝛼 < −1), positive extreme stable
(−1 < −𝛼 < 0) and Tweedie −𝛼 > 0) families. No distributions correspond to 0 < 𝑝 < 1,
−𝛼 < −2 on the left.

1The Lévy stable 𝛼 = 1/2 distribution vs. inverse Gaussian distributions when 𝑝 = 3 is an example
of the latter behavior.
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1.3 Members of the PVF.
• When 𝛼 = 2 and 𝑝 = 0, then 𝜃 = 0 ∈ Θ𝑝 and

𝐾0(𝑡) = 𝜅(𝑡) = 1
2

𝑡2,

which is the cumulant function for the normal distribution. As expected, 𝑉 (𝜇) = 𝜇0

is constant. This NEF is regular because 0 is an interior point of Θ𝑝.

• When 1 < 𝛼 < 2 and 𝑝 < 0, then 𝜃 = 0 ∈ Θ𝑝 and

𝐾0(𝑡) = 𝜅(𝑡) = 𝛼 − 1
𝛼

( 𝑡
𝛼 − 1

)
𝛼

,

which is an 𝛼-stable distribution with Lévy density |𝑥|−𝛼−1 on 𝑥 < 0. It falls into
the compensated IACP, case 3 group, discussed in Part III, and takes any real value,
positive or negative, despite only having negative jumps. It has a thick left tail and
thin right tail. Its mean is zero, but the variance does not exist. A tilt with 𝑒𝜃,
𝜃 > 0 makes the left tail thinner, the right tail thicker, and increases the mean. The
effect on the right tail is manageable because it is thinner than a normal, [1], [2].
As 𝜃 ↓ 0 the mean decreases to zero and the variance increases, finally becoming
infinite when 𝜃 = 0.

• When 𝛼 = 1 and 𝑝 = ∞, then 𝜃 = 0 ∈ Θ𝑝. Here we interpret 𝑉 to be the exponential
variance function and have seen

𝐾0(𝑡) = 𝜅(𝜃) = 𝜃(1 − log(−𝜃)),

corresponding to an extreme stable distribution with 𝛼 = 1, [3] and [4]. The NEF
exhibits a kind of super-contagion between risks, resulting in an exponential increase
in variance with the mean. The distribution is still case 3 and is supported on the
whole real line.

• When 0 < 𝛼 < 1 and 𝑝 > 2, then 0 ∈ Ω𝑝 and

𝐾0(𝑡) = 𝜅(𝑡) = −1 − 𝛼
𝛼

( −𝑡
1 − 𝛼

)
𝛼

,

which is an extreme stable with Lévy distribution 𝑥−𝛼, 𝑥 > 0. The distribution is
very thick tailed and does not have a mean (𝜅(𝜃) is not differentiable at 0 because
it has a cusp). In the case 𝛼 = 1/2 we get the Lévy stable distribution and the
inverse Gaussian NEF.

• When 𝛼 = 0 and 𝑝 = 2, then 0 ∉ Ω𝑝 and we analyze

𝐾𝜃(𝑡) = 𝜅(𝑡 + 𝜃) − 𝜅(𝜃)
= − log(−(𝑡 + 𝜃)) + log(−𝜃)

= log (1 + 𝑡
𝜃

)

= log (1 − 𝑡
−𝜃

)

which is a gamma distribution with rate −𝜃 and shape 1.
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• When 𝛼 < 0 and 1 < 𝑝 < 2, then 0 ∉ Ω𝑝 and we analyze

𝐾𝜃(𝑡) = 𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

{(1 + 𝑡
𝜃

)
𝛼

− 1}

for 𝜃 < 0. The value 𝜃/(𝛼−1) is positive and (1−𝑡/(−𝜃))𝛼 is the MGF of a gamma
with shape −𝛼 and rate −𝜃. Thus 𝐾𝜃(𝑡) is the cumulant generating function for a
CP with expected frequency 𝛼−1

𝛼 ( 𝜃
𝛼−1)𝛼 > 0 and gamma severity. Distributions

with 1 < 𝑝 < 2 are called Tweedie distributions. Finally, we have demonstrated
why Tweedie distributions are a compound Poisson with gamma severity!

• When 𝛼 = ∞ and 𝑝 = 1, then 0 is an interior point of Ω𝑝 and the NEF is again
regular, like the normal. Now

𝐾0(𝑡) = 𝜅(𝑡) − 𝜅(0) = 𝑒𝑡 − 1

is the cumulant function for the Poisson distribution.

• Finally, when 𝛼 > 2 and 0 < 𝑝 < 1, there is no corresponding NEF. Arguing by
contradiction, suppose there is a NEF with 𝑉 (𝜇) = 𝜇𝑝, 0 < 𝑝 < 1. Since 𝜃 = 0 ∈ Θ𝑝
the NEF has a generating distribution with variance

𝜅″(0) = ( 𝜃
𝛼 − 1

)
𝛼−2

∣
𝜃=0

= 0.

A distribution with zero variance is degenerate and therefore has a cumulant
generating function 𝑒𝑐𝑡 for some constant 𝑐. But this contradicts the known form of
𝜅. Therefore, no such NEF can exist. This result was first proved in [5]. Considering
a possible NEF with variance function in this range reveals it would be very odd:
its variance explodes, relative to the mean, as the mean increases from zero because
𝑉 is not differentiable at zero. It is hard to conceive how such a thing would occur,
and Jorgensen’s result confirms that it cannot.

We have now covered all the possible values for 𝑝 and 𝛼 and identified all the distributions
in the power variance family. The findings are summarized in Table 2. The Support
column shows the possible values taken by family members and Means shows the range of
possible means.

Table 2: The Tweedie-PVF distributions. For 𝛼 < 2 they are generated by the jump size
density proportional to 𝑥−𝛼−1𝑒𝜃𝑥/𝑥. A NEF is regular if the canonical parameter domain
Θ is open and is steep if Ω = int conv(𝑆). The extreme Cauchy has 𝑉 (𝜇) = 𝑒𝜇. The
Levy stable is a limit case of inverse Gaussian as 𝜃 → 0.

Name 𝛼 𝑝 Support 𝑆 Mean Ω Θ𝑝

Regu-
lar Steep

Normal −2 0 (−∞, ∞) (−∞, ∞) (−∞, ∞) Yes Yes
Extreme stable (−2, −1) (−∞, 0) (−∞, ∞) (0, ∞) [0, ∞) No No
Extreme Cauchy −1 ∞ (−∞, ∞) (−∞, ∞) (−∞, 0) Yes Yes
Positive ext. stb. (−1, −1/2) (3, ∞) (0, ∞) (0, ∞) (−∞, 0] No Yes
Inverse Gaussian −1/2 3 (0, ∞) (0, ∞) (−∞, 0] No Yes
Positive ext. stb. (−1/2, 0) (2, 3) (0, ∞) (0, ∞) (−∞, 0] No Yes
Gamma 0 2 (0, ∞) (0, ∞) (−∞, 0) Yes Yes
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Name 𝛼 𝑝 Support 𝑆 Mean Ω Θ𝑝

Regu-
lar Steep

Tweedie (−∞, 0) (1, 2) [0, ∞) (0, ∞) (−∞, 0) Yes Yes
Poisson ∞ 1 {0, 1, 2, … } (0, ∞) (−∞, ∞) Yes Yes

We can identify the Lévy measure underlying power variance NEFs as a corollary of this
analysis, [6], [7]. In Part II we showed that under exponential tilting a Lévy density 𝑗
transforms into 𝑒𝜃𝑥𝑗(𝑥). From the classification given in the first section, we see that all
PVF exponential distributions except the normal have a jump density proportional to

𝑗(𝑥) = 𝑥−𝛼−1𝑒𝜃𝑥

for 𝛼 < 2 and varying 𝜃. In a sense, this distribution can be regarded as a universal
severity distribution. When 𝛼 ≤ 0, the Tweedie range, then 𝜃 < 0 to ensure 𝑗 is finite.
Then 𝛼 > 0, 𝜃 = 0 defines a legitimate, stable distribution. The common jump density
binds all PVF distributions together even though their individual densities are quite
different.

Figure 2 shows the completed NEF Circle for the PVF for 𝑝 ∉ {0, 1, 2}. The deviance,
log likelihood, and cumulant generator are also correct for 𝑝 = 0, 𝛼 = 2, but the density
obviously becomes the normal distribution density. The Lévy measure is added at the top
to unify the diagram. Series expansions are available for 𝑐 and the density, see [3] Section
4.2 or [8] Section 14.

κ(θ) =
α− 1

α

(
θ

α− 1

)α

c(y) no closed form

f(y; θ = no closed form

Kθ(t) = κ(θ)

[(
1 +

t

θ

)α

− 1

]

κ′(θ) =

(
θ

α− 1

)α−1

V (µ) = µp

l(y;µ) =
yµ1−p

1− p
+

µ2−p

2− p

d(y;µ) = 2

(
(y+)2−p

(1− p)(2− p)
− yµ1−p

1− p
+

µ2−p

2− p

)

f(y;µ) = no closed form

Lévy density ∝ x−α−1eθx, α < 2

Figure 2: The NEF circle for the PVF families, 𝑝 ∉ {1, 2}, 𝛼 = (𝑝 − 2)/(𝑝 − 1),
(𝛼 − 1)(1 − 𝑝) = 1. Taking 𝛼 = 2, 𝑝 = 0 produces the normal distribution.

1.4 The Tweedie Compound Poisson Family
The previous section identified the Tweedie family within the PVF as compound Poisson
distributions with gamma severity. Tweedie distributions are ideally suited to modeling
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losses or pure premiums, where the outcome of no losses has a positive probability, because
they are mixed with a mass at 0. Their mean to variance relationship, 𝑉 (𝜇) ∝ 𝜇𝑝 for
1 < 𝑝 < 2, spans from a diversifying growth model at 𝑝 = 1 to the non-diversifying model
at 𝑝 = 2, as we saw in Part III. Thus the Tweedie family interpolates across the range of
a priori reasonable outcomes by varying a family of gamma severity CPs from a Poisson
with degenerate severity and 𝑉 (𝜇) ∝ 𝜇, to a gamma with jump distribution 𝛼𝑒−𝛽𝑥/𝑥 and
𝑉 (𝜇) ∝ 𝜇2. As the parameter 𝑝 increases from 1 to 2, the Tweedie moves continuously
from modeling diversifiable growth to non-diversifiable. To understand how it achieves this
interpolation we introduce a specific parameters, based on parameters for the underlying
frequency and severity. We then try to guess how the Tweedie is parameterized based
solely on these facts. Obviously, we are cheating because we know the answer, but it
instructive to see how close we can get.

The Poisson frequency distribution is easy to understand. It has a single parameter 𝜆
equal to the mean, and the variance is also 𝜆. The CV is 1/

√
𝜆. As 𝜆 increases the

Poisson becomes relatively more tightly distributed about its mean.

The gamma severity distribution is tricker because it has two common parameterizations.
We will use shape and rate parameters, 𝛼 > 0 and 𝛽 > 0, with associated gamma density

𝑓(𝑥; 𝛼, 𝛽) = 𝛽𝛼

Γ(𝛼)
𝑥𝛼𝑒−𝛽𝑥

𝑥
.

The factor 𝑥 is written in the denominator to emphasize it is more natural to use to use
𝑑𝑥/𝑥 as a base measure of length on the positive reals than 𝑑𝑥. 𝑑𝑥/𝑥 is scale invariant:
if 𝑦 = 𝑘𝑥 then 𝑑𝑦/𝑦 = 𝑘𝑑𝑥/𝑘𝑥 = 𝑑𝑥/𝑥. The shape parameter is 𝛼. The mean increases
with 𝛼—just think about the shape of the density. For 𝛼 > 1 the gamma distribution has
a strictly positive mode at (𝛼 − 1)/𝛽.

𝛽 is a rate parameter. For integer 𝛼, the gamma distribution is the waiting time for 𝛼
events when the number of events per unit time is distributed Poisson(𝛽), and hence the
waiting time between events is exponential with mean 1/𝛽. This is reciprocity between
the gamma and Poisson, discussed in Part III. When 𝛼 = 1 the gamma is an exponential,
and when 𝛼 = 𝑛/2, 𝛽 = 1/2 it is 𝜒2 with 𝑛 degrees of freedom. The higher 𝛽, the lower
the mean: the more frequently trains run (higher departure rate) the less time you wait
for one to arrive.

With the shape-rate parameterization, the mean and variance of a gamma(𝛼, 𝛽) are 𝛼/𝛽
and 𝛼/𝛽2 respectively, the CV is 1/

√
𝛼, and the expected squared value is 𝛼(𝛼 + 1)/𝛽2.

The skewness is 2/
√

𝛼 showing that the density becomes more symmetric as 𝛼 increases.

We can parameterize a Tweedie family distribution as 𝑍 = CP(𝜆, gamma(𝛼, 𝛽)). 𝑍 has
mean 𝜆𝛼/𝛽 and variance 𝜆𝛼(𝛼 + 1)/𝛽2. It is more useful if the mean appears as a
parameter. To that end, consider the alternative parameters 𝑝, 𝜇 and 𝜎2, related by
E[𝑍] = 𝜇 and Var(𝑍) = 𝜎2𝜇𝑝, and 𝑝 to be determined.

Let’s see if we can solve for the parameters of CP(𝜆, gamma(𝛼, 𝛽)) in terms of 𝑝, 𝜇 and
𝜎2. We know 𝜇 = 𝜆𝛼/𝛽 and 𝜎2𝜇𝑝 = 𝜆𝛼(𝛼 + 1)/𝛽2, but we still need another equation
for a unique solution.

Distributions within a NEF are specified by the underlying variance function 𝑉, location
𝜇, and dispersion 𝜎2 acting so the variance is 𝜎2𝑉 (𝜇). Dispersion operates analogous to
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scale in a normal-distribution world. In CP(𝜆, gamma(𝛼, 𝛽)), 𝜆 determines location and
𝛽 (strictly 1/𝛽) determines dispersion, whereas 𝛼 will change shape in a more profound
way. This suggests that 𝑝 should be related to 𝛼, independent of the other parameters.
Assuming 𝛼 = 𝛼(𝑝), an equation to be specified later, and substituting for the mean and
variance gives

𝜆 = ( 𝛼 + 1
𝛼𝜎2𝜇𝑝 ) 𝜇2

and
𝛽 = (𝛼 + 1

𝜎2𝜇𝑝 ) 𝜇.

It is a good exercise to check these formulas give the desired mean 𝜇 and variance 𝜎2𝜇𝑝.
The terms involving 𝛼 cancel out.

To understand the missing function 𝛼(𝑝) we can look what Table 2 implies about its
behavior for 𝑝 close to 1 and 2 for a fixed 𝜇. Assume 𝜎2 = 1 to simplify the algebra.

• As 𝑝 decreases to 1 the Tweedie approaches a Poisson with mean 𝜇. At the same time,
𝜆 = 𝜇2−𝑝(𝛼+1)/𝛼 → 𝜇(𝛼+1)/𝛼 and therefore (𝛼+1)/𝛼 → 1, which in turn implies
𝛼 → ∞. Therefore the mean of the gamma severity 𝛼/𝛽 = 𝛼𝜇𝑝−1/(𝛼 + 1) → 1 also.
The CV of the gamma severity 1/

√
𝛼 → 0, and so severity becomes more and more

tightly clustered around 𝑥 = 1.
• As 𝑝 increases to 2 the Tweedie approaches a gamma distribution. Now 𝜆 → (𝛼+1)/𝛼

and 𝛽 → (𝛼+1)/𝜇. A gamma distribution is continuous, supported on 𝑥 > 0. There
is no possibility it takes the value zero. Since Pr(CP(𝜆) = 0) = 𝑒−𝜆, corresponding
to the Poisson claim count 𝑁 = 0, it follows that 𝜆 → ∞. Therefore 𝛼 → 0 as
𝑝 → 2.

These two extremes mirror the models of diversifying and non-diversifying growth presented
in Part III. When 𝑝 = 1, 𝜆 is proportional to 𝜇 and severity is fixed 𝑋 = 1. When 𝑝 = 2,
𝜆 is independent of 𝜇 and mean severity 𝛼/𝛽 = 𝜇𝛼/(𝛼 + 1) increases with 𝜇.

Combining the two conditions shows that the unknown function 𝛼(𝑝) satisfies 𝛼(1) = ∞
and 𝛼(2) = 0. The simplest positive function with these properties is

̄𝛼(𝑝) = 2 − 𝑝
𝑝 − 1

,

which turns out to be the correct relationship, not only for 1 ≤ 𝑝 ≤ 2 but for all 𝑝.
(Note that ̄𝛼 = −𝛼 defined in Section 1.2: when discussing stable distributions 𝛼 > 0
and the jump distribution is 𝑥−𝛼. For the gamma distribution the power of 𝑥 appears
with a positive parameter. The bar distinguishes the two.) Since ̄𝛼 + 1 = 1/(𝑝 − 1) and
( ̄𝛼 + 1)/ ̄𝛼 = 1/(2 − 𝑝), we can re-write

𝜆 = 𝜇2

(2 − 𝑝)𝜎2𝜇𝑝

and
𝛽 = 𝜇

(𝑝 − 1)𝜎2𝜇𝑝 .
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Figure 3: Tweedie family densities with 𝜇 = 1 for various values of 𝑝 and 𝜎2.
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Figure 4: Tweedie family log densities with 𝜇 = 1 for various values of 𝑝 and 𝜎2.
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1.5 Examples of Tweedie Density Functions
The Tweedie distribution is mixed: it has a probability mass at 𝑥 = 0 and is continuous
for 𝑥 > 0. Its density can assume a many different shapes, as we now illustrate.

Figure 3 and Figure 4 show sample Tweedie densities for various parameter values on
a linear and log scale. The dot shows the probability mass at 0. The distributions
transition from near-Poisson, 𝑝 = 1.005, on the left to near-gamma, 𝑝 = 1.995, on the
right. Vertically the dispersion increases from 0.1 to 0.4 to 1.0. The left hand column
illustrates how the Tweedie approaches a Poisson. The lower right most plot is close to an
exponential distribution.

Table 3: The 𝑝, 𝜇 and 𝜎2 Tweedie distribution parameters, with corresponding Poisson 𝜆,
gamma 𝛼, 𝛽, and resulting aggregate variance and CV, probability 𝑍 = 0, expected and
CV severity statistics.

𝜇 𝑝 𝜎2 𝜆 𝛼 𝛽 Var(𝑍) CV(𝑍)
Pr(𝑍 =

0) 𝛼/𝛽 CV(𝑋)

1 1.005 0.1 10.0503 199 2000 0.1 0.3162 4.3174e-
05

0.0995 0.0708

1 1.005 0.4 2.5125 199 500 0.4 0.6324 0.0810 0.398 0.0708
1 1.005 1 1.0050 199 200 1 1 0.3660 0.995 0.0708

1 1.3 0.1 14.2857 2.3333 33.3333 0.1 0.3162 6.2487e-
07

0.07 0.6546

1 1.3 0.4 3.5714 2.3333 8.3333 0.4 0.6324 0.0281 0.28 0.6546
1 1.3 1 1.4285 2.3333 3.3333 1 1 0.2396 0.7 0.6546

1 1.7 0.1 33.3333 0.4285 14.2857 0.1 0.3162 3.3382e-
15

0.03 1.5275

1 1.7 0.4 8.3333 0.4285 3.5714 0.4 0.6324 0.0002 0.12 1.5275
1 1.7 1 3.3333 0.4285 1.4285 1 1 0.0356 0.3 1.5275

1 1.995 0.1 2000 0.0050 10.0503 0.1 0.3162 very
small

0.0005 14.1067

1 1.995 0.4 500 0.0050 2.5125 0.4 0.6324 7.1245e-
218

0.002 14.1067

1 1.995 1 200 0.0050 1.0050 1 1 1.3839e-
87

0.005 14.1067

Table 3 shows the underlying parameters, broken into groups by 𝑝. The values of 𝛼 and
hence CV(𝑋) only depend on 𝑝. As 𝑝 increases to 2, 𝜆 increases and the severity becomes
thicker tailed and more skewed. The value 𝛼/𝛽 is the expected severity. Since the overall
mean is always 1.0 the expected frequency 𝜆 = 𝛽/𝛼.

1.6 Appendix: R and Python Code
There is no closed-form expression for the density or distribution function of a general
Tweedie family variable. The R package tweedie will compute Tweedie densities. The
code below can be used to reproduce Figure 3 and Figure 4} by inputting the appropriate
parameters. It also shows how to use the tweedie.convert function to reproduce Table 3.
R outputs the mean rather than the rate for the second gamma parameter; it is the
reciprocal of what we show.
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# R code for p=1.005 and sigma^2=0.1 graph

library(tweedie)
library(tidyverse)

# Tweedie, phi=sigma^2
mu <- 1
p <- 1.005
phi <- 0.1
twdf = tibble(x = seq(0, 6, length=500),

fx = dtweedie(y=x, power=p, mu=mu, phi=phi))

ggplot(data=twdf) + geom_line(aes(x=x, y=fx))

# parameters to reproduce Table 7
tbl_tweedies <- crossing(
mu = 1
, p = c(1.005, 1.3, 1.7, 1.995)
, phi = c(0.1, 0.4, 1)

) %>%
mutate(
lst_conversions = map2(p, phi, tweedie.convert, mu = 1)
, lambda = map_dbl(lst_conversions, 'poisson.lambda')
, alpha = map_dbl(lst_conversions, 'gamma.shape')
, beta = 1 / map_dbl(lst_conversions, 'gamma.scale')

) %>%
select(-lst_conversions)

tbl_tweedies

Figure 3 and Figure 4 were produced using Python, computing the Tweedie density using
Fast Fourier Transforms, as shown in the next block of code, see [9]. The second plot,
𝑝 = 1.0005, shows just how bizarre the Tweedie density can become. It is not reproduced
here.
import numpy as np
import pandas as pd

def tweedie(mu, p, sigma2, log2, bs):
"""
FFT approximation to the Tweedie distribution
mu = mean of Tweedie with variance function sigma2 mu^p

log2, bs control FFT discretization
"""

alpha = (2 - p) / (p - 1)
lam = mu**(2 - p) / ((2 - p) * sigma2)
beta = mu**(1 - p) / ((p - 1) * sigma2)

sev = ss.gamma(alpha, scale=1 / beta)

ft = np.fft.rfft
ifft = np.fft.irfft

# discretize severity
xs = bs * np.arange(2**log2)
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ps = -np.diff(sev.sf(xs + bs/2), prepend=1)

# convolve with MGF - see Part II
tw = ifft( np.exp( lam * (ft(ps) - 1) ) )

return pd.DataFrame({'tweedie': tw}, index=xs)

# p=1.005, sigma^2=0.1, m
df = tweedie(1., 1.005, 0.1, 16, 1/1024)
df.plot(xlim=[0,5], figsize=(10,8))

# a more spectacular plot (not shown)
df = tweedie(10, 1.0005, 0.1, 16, 1/1024)
df.plot(xlim=[5,15], figsize=(10,8))
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