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1 Probability Models for Insurance Losses

1.1 Introduction
Losses have a complicated, dynamic structure. An insurance portfolio’s loss depends on
the expected loss rate and the length of time it is exposed, analogous to distance equals
speed multiplied by time. Total losses 𝐿 = 𝐿(𝑒, 𝑡) over a period (0, 𝑡] are a function of
exposure and time. Exposure is measured in homogeneous units, each with the equal
expected loss rates. What is the best way to model 𝐿(𝑒, 𝑡)?

Is it reasonable to assume losses occur at a constant rate? Generally, not. Even for
earthquake losses, where events appear perfectly random, the occurrence time influences
losses. Did the loss occur during the commute, working hours, nighttime, or over a
weekend? There are two ways to address this reality. One, over the time frame of an
insurance policy the rate averages out and can be treated as constant. Two, use a time
change to equalize the claim rate. The time change, called an operational time, runs time
faster during high expected loss periods and slower during low. It provides the perfect
clock against which to earn premium. As always, what matters is the deviation from
expected. We proceed assuming a constant expected rate of claim occurrence, justified by
either of these rationales.

If insured risks are independent, we could posit that losses over (0, 𝑡1 + 𝑡2] should have
the same distribution as the sum of independent evaluations over (0, 𝑡1] and (0, 𝑡2]. But
there could be good reasons why this is not the case. Weather, for example, is strongly
autoregressive: weather today is the best predictor of the weather tomorrow. Failure of
independence manifests itself in an inter-insured and inter-temporal loss dependency or
correlation. However, using common operational time and economic drivers can explain
much of this correlation; see [1] and the work of Glenn Meyers on contagion.

Having stipulated caveats for expected loss rate and dependency, various loss models
present themselves. A homogeneous model says 𝐿(𝑒, 𝑡) = 𝑒𝑅𝑡 where 𝑅𝑡 represents a
common loss rate for all exposures. This model is appropriate for a stock investment
portfolio, with position size 𝑒 and stock return 𝑅𝑡. It implies the CV is independent of
volume.

A homogeneous model has 𝐿(𝑒, 𝑡) ∼ 𝐷(𝑒𝑡, 𝜙), a distribution with mean 𝑚 = 𝑒𝑡 and
additional parameters 𝜙. A GLM then models 𝑚 as a function of a linear combination of
covariates, often with 𝑒 as an offset. We can select the time period so that the expected
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loss from one unit of exposure in one period of time equals 1. In this model, time and
exposure are interchangeable. The loss distribution of a portfolio twice the size is the
same as insuring for twice as long. Thus we can merge loss rate and time into one variable
𝜈 and consider 𝐿 = 𝐿(𝜈). If 𝜈 is an integer then 𝐿(𝜈) = ∑1≤𝑖≤𝜈 𝑋𝑖 where 𝑋𝑖 ∼ 𝐿(1) are
independent. Therefore Var(𝐿(𝜈)) = 𝜈Var(𝐿(1)) and the CV of 𝐿(𝜈) is 𝐶𝑉 (𝐿(1))/

√
𝜈.

The CV of losses are not independent of volume, in contrast to the investment modeling
paradigm. The actuary knows this: the shape of the loss distribution from a single policy
(highly skewed, large probability of zero losses) is very different to the shape for a large
portfolio (more symmetric, very low probability of zero losses.)

As always, reality is more complex. [2] discusses five alternative forms for 𝐿(𝑒, 𝑡). It shows
that only a model with random operational time is consistent with NAIC Schedule P
data, after adjusting for the underwriting cycle.

The focus of this section is to determine which distributions are appropriate for modeling
homogeneous blocks with a constant loss rate relative to (operational) time. These
distributions are used in predictive modeling for ratemaking and reserving, for example.
Other applications, such as capital modeling and Enterprise Risk Management, model
heterogeneous portfolios where understanding dependencies becomes critical. These are
not our focus and are therefore ignored, despite their importance.

The ability to embed a static loss model 𝐿 into a family, or stochastic process, of models
𝐿(𝜈) appropriate for modeling different volumes of business over different time frames is
an important concept that is introduced in this section. Dynamic modeling leads to a
compound Poisson process and, more generally, a Lévy process. We begin by recalling the
aggregate loss model of collective risk theory.

1.2 The Aggregate Loss Model
An aggregate loss model random variable has the form 𝑌 = 𝑋1 + ⋯ + 𝑋𝑁 where
𝑁 models claim count (frequency) and 𝑋𝑖 are independent, identically distributed (iid)
severity variables. Aggregate loss models have an implicit time dimension: 𝑁 measures
the number of claims over a set period of time, usually one year. Aggregate loss models
are the basis of the collective risk model and are central to actuarial science.

Expected aggregate losses equal expected claim count times average severity, E[𝑌 ] =
E[𝑁]E[𝑋]. There is a tricky formula for the variance of 𝑌; here is an easy way to remember
it. If 𝑋 = 𝑥 is constant then 𝑌 = 𝑥𝑁 has variance 𝑥2Var[𝑁]. If 𝑁 = 𝑛 is constant then
𝑋1 + ⋯ + 𝑋𝑛 has variance 𝑛Var(𝑋) because 𝑋𝑖 are independent. The variance formula
must specialize to these two cases and therefore, replacing 𝑛 with E[𝑁] and 𝑥 with E[𝑋],
suggests

Var(𝑌 ) = E[𝑋]2Var(𝑁) + E[𝑁]Var(𝑋)

is a good bet. By conditioning on 𝑁 you can check it is correct.

1.3 Compound Poisson Distributions
A compound Poisson (CP) random variable is an aggregate loss model where 𝑁 has a
Poisson distribution. Let CP(𝜆, 𝑋) = 𝑋1 + ⋯ + 𝑋𝑁 where 𝑁 is a Poisson with mean 𝜆
and 𝑋𝑖 ∼ 𝑋 are iid severities. We shall see that the Tweedie family is a CP where 𝑋𝑖
have a gamma distribution.

2



By the results in the previous section E[CP(𝜆, 𝑋)] = 𝜆E[𝑋]. Since Var(𝑁) = E[𝑁] for
Poisson 𝑁 and Var(𝑋) = E[𝑋2] − E[𝑋]2, we get

Var(CP(𝜆, 𝑋)) = E[𝑁]E[𝑋2].

CP distributions are a flexible and tractable class of distributions with many nice properties.
They are the building block for almost all models of loss processes that occur at discrete
times.

1.4 Diversifying and Non-Diversifying Insurance Growth
We want to understand the relationship between the variance of losses and the mean
loss for an insurance portfolio as the mean varies, i.e., the variance function. Is risk
diversifying, so larger portfolios have relatively lower risk, or are there dependencies
which lower the effectiveness of diversification? Understanding how diversification scales
has important implications for required capital levels, risk management, pricing, and
the optimal structure of the insurance market. Let’s start by describing two extreme
outcomes using simple CP models. Assume severity 𝑋 is normalized so E[𝑋] = 1 and let
𝑥2 ∶= E[𝑋2].

Consider CP1(𝜇, 𝑋). The variance function is 𝑉 (𝜇) = Var(CP1) = 𝜇𝑥2, which grows
linearly with 𝜇. CP1 models diversifying growth in a line with severity 𝑋. Each risk
is independent: increasing expected loss increases the expected claim count but leaves
severity unchanged. CP1 is a good first approximation to growth for a non-catastrophe
exposed line.

Alternatively, consider CP2(𝜆, (𝜇/𝜆)𝑋) for a fixed expected event count 𝜆. Now, the
variance function is 𝑉 (𝜇) = Var(CP2) = 𝜆(𝜇/𝜆)2𝑥2 = 𝜇2(𝑥2/𝜆) grows quadratically with
𝜇. The distribution of the number of events is fixed, as is the case in a regional hurricane
or earthquake cover. Increasing portfolio volume increases the expected severity for each
event. CP2 is a model for non-diversifying growth in a catastrophe-exposed line. It
is the same as the position size-return stock investment model. Risk, measured by the
coefficient of variation, is constant, equal to √𝑥2/𝜆, independent of volume. This is a
homogeneous growth model.

We will see in Part IV that the Tweedie family of compound Poisson distributions
interpolates between linear and quadratic variance functions.

A more realistic model adds uncertainty in 𝜇, resulting in a variance function of the form
𝜇(𝑎 + 𝑏𝜇) which is diversifying for small 𝜇 and homogeneous for larger 𝜇.

1.5 The Moment Generating Function of a CP
Many useful properties of CP distributions are easy to see using MGFs. To compute
the MFG of a CP we first to compute the MGF of a Poisson distribution. We need two
facts: the Poisson probability mass function Pr(𝑁 = 𝑛) = 𝑒−𝜆𝜆𝑛/𝑛! and the Taylor series
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expansion of the exponential function 𝑒𝑥 = ∑𝑛≥0 𝑥𝑛/𝑛!. Then

𝑀𝑁(𝑡) = E[𝑒𝑡𝑁]

= ∑
𝑛≥0

𝑒𝑡𝑛 𝑒−𝜆𝜆𝑛

𝑛!

= 𝑒−𝜆 ∑
𝑛≥0

(𝑒𝑡𝜆)𝑛

𝑛!

= 𝑒−𝜆𝑒𝜆𝑒𝑡

= exp(𝜆(𝑒𝑡 − 1))
We can now compute the MGF of CP(𝜆, 𝑋) using conditional expectations and the identity
𝑥𝑛 = 𝑒𝑛 log(𝑥):

𝑀CP(𝜆,𝑋)(𝑡) = E[𝑒𝑡CP(𝜆,𝑋)]
= E𝑁[E𝑋[𝑒𝑡(𝑋1+⋯𝑋𝑁) ∣ 𝑁]]
= E𝑁[(E𝑋[𝑒𝑡𝑋])𝑁]
= E𝑁[𝑀𝑋(𝑡)𝑁]
= E𝑁[𝑒𝑁 log(𝑀𝑋(𝑡))]
= 𝑀𝑁(log(𝑀𝑋(𝑡)))
= exp(𝜆(𝑀𝑋(𝑡) − 1)).

A Poisson variable can be regarded as a CP with degenerate severity 𝑋 ≡ 1, which has
MGF 𝑒𝑡. Thus the formula for the MGF of a CP naturally extends the MGF of a Poisson
variable.

An example showing the power of MGF methods comes from the problem of thinning. We
want to count the number of claims excess 𝑥 where ground-up claims have a distribution
CP(𝜆, 𝑋). Take severity to be a Bernoulli random variable 𝐵 with Pr(𝐵 = 1) = Pr(𝑋 >
𝑥) = 𝑝 and Pr(𝐵 = 0) = 1 − 𝑝. 𝐵 indicates if a claim exceeds 𝑥. CP(𝜆, 𝐵) counts
the number of excess claims. It is called a thinning of the original Poisson. It is
relatively easy to see that CP(𝜆, 𝐵) ∼ Poisson(𝜆𝑝) using the conditional probability
formula Pr(CP = 𝑛) = ∑𝑘≥𝑛 Pr(CP = 𝑛 ∣ 𝑁 = 𝑘)Pr(𝑁 = 𝑘) (exercise). But it is very
easy to see the answer using MGFs. By definition 𝑀𝐵(𝑡) = (1 − 𝑝) + 𝑝𝑒𝑡, and therefore

𝑀CP(𝑡) = 𝑀𝑁(𝜆(𝑀𝐵(𝑡) − 1))
= 𝑀𝑁(𝜆((1 − 𝑝 + 𝑝𝑒𝑡 − 1)))
= exp(𝜆𝑝(𝑒𝑡 − 1)).

The MGF of a mixture is the weighted average of the MGFs of the components. If �̄� is a
𝑝1, 𝑝2, 𝑝1 + 𝑝2 = 1, mixture of 𝑋1 and 𝑋2, so 𝐹�̄�(𝑥) = 𝑝1𝐹1(𝑥) + 𝑝2𝐹2(𝑥), then

𝑀�̄�(𝑡) = ∫ 𝑒𝑡𝑥 (𝑝1𝑓𝑋1
(𝑥) + 𝑝2𝑓𝑋2

(𝑥)) 𝑑𝑥

= 𝑝1 ∫ 𝑒𝑡𝑥𝑓𝑋1
(𝑥) 𝑑𝑥 + 𝑝2 ∫ 𝑒𝑡𝑥𝑓𝑋2

(𝑥) 𝑑𝑥

= 𝑝1𝑀𝑋1
(𝑡) + 𝑝2𝑀𝑋2

(𝑡).
This fact allows us to create discrete approximation CPs and convert between a frequency-
severity and a jump severity distribution view. It is helpful when working with catastrophe
model output.
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1.6 The Addition Formula
CP distributions satisfy a simple addition formula

CP(𝜆1, 𝑋1) + CP(𝜆2, 𝑋2) ∼ CP(𝜆, �̄�)

where 𝜆 = 𝜆1 + 𝜆2 and �̄� is a mixture of independent 𝑋1 and 𝑋2 with weights 𝜆1/𝜆 and
𝜆2/𝜆. The addition formula is intuitively obvious: think about simulating claims and
remember two facts. First, that the sum of two Poisson variables is Poisson, and second,
that to simulate from a mixture, you first simulate the mixture component based on the
weights and then simulate the loss from the selected component.

It is easy to demonstrate the the addition formula using MGFs:

𝑀CP(𝜆1,𝑋1)+CP(𝜆2,𝑋2)(𝑡) = 𝑀CP(𝜆1,𝑋1)(𝑡) 𝑀CP(𝜆2,𝑋2)(𝑡)
= exp(𝜆1(𝑀𝑋1

(𝑡) − 1)) exp(𝜆2(𝑀𝑋2
(𝑡) − 1))

= exp(𝜆([(𝜆1/𝜆)𝑀𝑋1
(𝑡) + (𝜆1/𝜆)𝑀𝑋2

(𝑡)] − 1))
= exp(𝜆(𝑀�̄�(𝑡) − 1))
= 𝑀CP(𝜆,�̄�)(𝑡).

The addition formula is the MGF for a mixture in reverse. To sum of multiple CPs you
sum the frequencies and form the frequency-weighted mixture of the severities.

The addition formula is handy when working with catastrophe models. catastrophe models
output a set of events 𝑖, each with a frequency 𝜆𝑖 and a loss amount 𝑥𝑖. They model the
number of occurrences of each event using a Poisson distribution. Aggregate losses from
the event 𝑖 are given by CP(𝜆𝑖, 𝑥𝑖) with a degenerate severity.

It is standard practice to normalize the 𝜆𝑖, dividing by 𝜆 = ∑𝑖 𝜆𝑖, and form the empirical
severity distribution ̂𝐹 (𝑥) = ∑𝑖∶𝑥𝑖≤𝑥 𝜆𝑖/𝜆. ̂𝐹 is the 𝜆𝑖 weighted mixture of the degenerate
distribution 𝑋𝑖 = 𝑥𝑖. By the addition formula, aggregate losses across all events are
CP(𝜆, �̂�) where �̂� has distribution ̂𝐹.

1.7 Lévy Processes and the Jump Size Distribution
The CP model of insurance losses is very compelling. The split into frequency and severity
mirrors the claims process. However, we could take a different approach. We could specify
properties an insurance loss model must have, and then try to determine all distributions
satisfying those properties. In the process, we might uncover a new way of modeling
losses. The latter approach has been used very successfully to identify risk measures. For
example, coherent risk measures emerge as those satisfying a set of axioms.

As we discussed in the introduction, in a basic insurance model losses occur homogeneously
over time at a fixed expected rate. As a result, losses over a year equal the sum of twelve
identically distributed monthly loss variables, or 52 weekly, or 365 daily variables, etc. If
the random variable 𝑌1 represents losses from a fixed portfolio insured for one year, then
for any 𝑛 there are independent, iid variables 𝑋𝑖, 𝑖 = 1, … , 𝑛 so that 𝑌1 = 𝑋1 + ⋯ + 𝑋𝑛.
Random variables with this divisibility property for every 𝑛 ≥ 1 are called infinitely
divisible (ID). The Poisson, normal, gamma, negative binomial, lognormal, and Pareto
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distributions are all ID. This is obvious for the first four from the form of their MGFs.
For example, the Poisson MGF shows

𝑒𝜆(𝑒𝑡−1) = {𝑒 𝜆
𝑛 (𝑒𝑡−1)}𝑛

so the Poisson is a sum of 𝑛 Poisson variables for any 𝑛. The same applies to a CP.
Proving the lognormal or Pareto is ID is much trickier. A distribution with finite support,
such as the uniform or binomial distributions, is not ID. A mixture of ID distributions is
ID if the mixture distribution is ID.

Any infinitely divisible distribution 𝑌 can be embedded into a special type of stochastic
process called a Lévy process so that 𝑌 has the same distribution as 𝑌1. The process 𝑌𝑡
shows how losses occur over time, or as volume increases, or both. 𝑌𝑡 is a Lévy process
if it has independent and identically distributed increments, meaning the distribution
of 𝑌𝑠+𝑡 − 𝑌𝑠 only depends on 𝑡 and is independent of 𝑌𝑠. Lévy processes are Markov
processes: the future is independent of the past given the present. The Lévy processes
representation is built-up by determining the distribution of 𝑌𝜖 for a very small 𝜖 and
then adding up independent copies to determine 𝑌𝑡. The trick is to determine 𝑌𝜖.

Lévy processes are very well understood. See [3] for a comprehensive reference. They
are the sum of a deterministic drift, a Brownian motion, a compound Poisson process for
large losses, and a process that is a limit of compound Poisson processes for small losses.
All of four components do not need to be present. Insurance applications usually take
𝑌𝑡 to be a compound Poisson process 𝑌𝑡 = 𝑋1 + ⋯ + 𝑋𝑁(𝑡), where 𝑋𝑖 are iid severity
variables and 𝑁(𝑡) is a Poisson variable with mean proportional to 𝑡.

When a normal, Poisson, gamma, inverse Gaussian, or negative binomial distribution is
embedded into a Lévy processes, all the increments have the same distribution, albeit with
different parameters. This follows from the form of their MGFs, following the Poisson
example above. But it is not required that the increments have the same distribution.
For example, when a lognormal distribution is embedded the divided distributions are not
lognormal—it is well known (and a considerable irritation) that the sum of two lognormals
is not lognormal.

The structure of Lévy processes implies that the MGF of 𝑋𝑡 has the form

E[𝑒𝑠𝑋𝑡 ] = exp(𝑡𝜅(𝑠))

where 𝜅(𝑠) = log E[𝑒𝑠𝑋1 ] is cumulant generating function of 𝑋1. To see this, suppose
𝑡 = 𝑚/𝑛 is rational. Then, by the additive property E[𝑒𝑠𝑋𝑚/𝑛 ] = E[𝑒𝑠𝑋1/𝑛 ]𝑚 and
E[𝑒𝑠𝑋1 ] = E[𝑒𝑠𝑋1/𝑛 ]𝑛, showing E[𝑒𝑠𝑋1 ]1/𝑛 = E[𝑒𝑠𝑋1/𝑛 ]. Thus E[𝑒𝑠𝑋𝑚/𝑛 ] = E[𝑒𝑠𝑋1 ]𝑚/𝑛. The
result follows for general 𝑡 by continuity. Therefore, the cumulant generating function of
𝑋𝑡 is 𝜅𝑡(𝑠) = 𝑡𝜅(𝑠).

1.8 Jump Densities and Infinite Activity CPs
Instead of a frequency and severity split, we could focus on the frequency of loss by size.
In the CP model, this involves replacing the frequency 𝜆 and loss distribution 𝐹 with the
single loss frequency jump distribution 𝜆𝐹. The expected frequency of a loss in the range
(𝑥1, 𝑥2] is 𝜆(𝐹(𝑥2) − 𝐹(𝑥1)). In general, a jump distribution 𝐽(𝑥) equals the expected
frequency of jumps of size > 𝑥. The jump distribution goes by many names: the loss
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frequency curve [4], the event frequency or exceeding probability curve in catastrophe
models [5], or a Lévy measure in probability theory [3], after Paul Lévy (1886-1971).
Frequency by size of loss is more relevant than event level severity for structuring a
reinsurance or risk management program.

We illustrate the idea of jump distributions for 𝑥 ≥ 0, which is what we need for insurance
losses. The theory is easy to extended to positive and negative jumps, but we don’t need
that generality.

The jump distribution is analogous to a survival function, except 𝐽(0) equals the total
number of claims rather than 1. By definition, 𝐽 must be a non-increasing function of
𝑥. There is no a priori reason that 𝐽(0) < ∞. If it is, then 𝐽(𝑥)/𝐽(0) is the survival
function for a severity distribution and we are back to a CP. Reconstructing frequency
and severity is not possible when 𝐽(0) = ∞ because it involves dividing by infinity. Can
we make rigorous sense of the case where 𝐽(0) = ∞? To that end, we need to determine
if there are any restrictions at all on 𝐽. It turns out, there are.

First, there can be only finitely many jumps of size ≥ 1. If there were an infinite number
of such jumps then we would always get an infinite loss—not good for insurance. The
value 1 is an arbitrary threshold for large; it could be any 𝜖 > 0. Thus we require that
𝐽(1) < ∞ for a valid jump distribution: the expected number of large claims is
finite. There can only be infinitely many claims because of the number of small claims.
Symbolically, lim 𝐽(𝑥) → ∞ as 𝑥 ↓ 0 is valid but 𝐽(𝑥) < ∞ for all 𝑥 > 0.

The possibility that 𝐽(0) = ∞ explains why 𝐽(𝑥) counts the number of jumps greater
than 𝑥. We can’t define the distribution as the number of losses ≤ 𝑥 because that could
be infinite for all 𝑥.

Second, the expected aggregate accumulation of all small jumps must be finite.
Suppose 𝐽 has a density 𝑗, meaning there is a function 𝑗 so that

𝐽(𝑥) = ∫
∞

𝑥
𝑗(𝑡)𝑑𝑡.

Then we require

∫
1

0
𝑥𝑗(𝑥) 𝑑𝑥 < ∞.

to ensure accumulated small (attritional) losses are finite. In contrast, the expected
accumulation of large claims, ∫∞

1
𝑥𝑗(𝑥) 𝑑𝑥, can be infinite provided the number of claims

𝐽(1) is finite. For example, CP(1, 𝑋), where E[𝑋] = ∞, has an unlimited expected
accumulation of loss but is still a valid CP model.

Assuming these two conditions hold, here’s how to define an infinite activity compound
Poisson (IACP). If 𝐽 has an infinite total number of jumps it is because 𝐽(𝑥) → ∞,
and hence 𝑗(𝑥) → ∞, as 𝑥 → 0. To manage a potential infinite frequency of small
losses, define a capped version of 𝑗 by 𝑗𝑛(𝑥) = 𝑗(𝑥) ∧ 𝑛 for 𝑛 = 1, 2, 3, … and let 𝐽𝑛
be the corresponding distribution. By construction 𝐽𝑛(0) < ∞ so we can find a loss
random variable 𝑋𝑛 with severity distribution 𝐹𝑛(𝑥) ∶= 1 − 𝐽𝑛(𝑥)/𝐽𝑛(0). Then define
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CP𝑛 ∶= CP(𝐽𝑛(0), 𝑋𝑛). We can decompose the MGF of CP𝑛 as

𝑀𝑛(𝑡) = exp (𝐽𝑛(0) ∫
∞

0
(𝑒𝑡𝑥 − 1)𝑗𝑛(𝑥)

𝐽𝑛(0)
𝑑𝑥)

= exp (∫
∞

0
(𝑒𝑡𝑥 − 1)𝑗𝑛(𝑥) 𝑑𝑥)

= exp (∫
∞

1
(𝑒𝑡𝑥 − 1)𝑗𝑛(𝑥) 𝑑𝑥) × exp (∫

1

0
(𝑒𝑡𝑥 − 1)𝑗𝑛(𝑥) 𝑑𝑥) .

Because there are only finitely many large losses, the first term is a CP for all 𝑛 and
converges to the 𝑌𝑙 ∶= CP(𝐽(1), 𝑋𝑙) where 𝑋𝑙 has density 𝑗(𝑥)/𝐽(1)1[1,∞)—it is made by
disregarding all the losses size 𝑥 ≤ 1. Because the expected accumulation of small jumps
is finite the integral in the second term also converges

∫
1

0
(𝑒𝑡𝑥 − 1)𝑗𝑛(𝑥) 𝑑𝑥 → ∫

1

0
(𝑒𝑡𝑥 − 1)𝑗(𝑥) 𝑑𝑥.

As a result of the general theory of MGFs1, the second term converges to the MGF of
a distribution 𝑌𝑠. 𝑌 = 𝑌𝑙 + 𝑌𝑠 is the IACP we want. It clearly extends a CP: if 𝑗(𝑥)
is bounded then 𝑗𝑛(𝑥) = 𝑗(𝑥) for 𝑛 sufficiently large. But is also allows us to define an
extended CP with unbounded 𝑗, such as 𝑗(𝑥) = 𝑥−3/2. It does not allow 𝑗(𝑥) = 𝑥−5/2

since then the accumulation of small claims is infinite.

The gamma distribution is an example of an IACP. Since a gamma has density is 0 at 0 it
cannot be a CP. A non-negative CP always has a probability mass 𝑒−𝜆 > 0 at 𝑥 = 0. We
can derive the jump density for a gamma distribution from the MGF for a gamma using
some trickery due to Frullani. A Γ(𝛼, 𝛽) distribution has density

𝑓(𝑥) = 𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥

where Γ(𝛼) ∶= ∫∞
0

𝑥𝛼−1𝑒−𝑥𝑑𝑥. The MGF is

𝑀(𝑡) = ∫
∞

0

𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝑥(𝛽−𝑡) 𝑑𝑥 = ( 𝛽

𝛽 − 𝑡
)

𝛼
= (1 − 𝑡

𝛽
)

−𝛼
.

1Lévy’s Continuity Theorem says that a sequence of random variables converges in distribution iff
their characteristic functions converge pointwise to a function that is continuous at the origin. That
function is then the characteristic function of the limit.
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Therefore the gamma cumulant generating function can be expressed as

𝜅(𝑡) = −𝛼 log (1 − 𝑡
𝛽

)

= 𝛼 ∫
𝑡

0

𝑑𝑧
𝛽 − 𝑧

= 𝛼 ∫
𝑡

0
∫

∞

0
𝑒−(𝛽−𝑧)𝑠 𝑑𝑠 𝑑𝑧

= 𝛼 ∫
∞

0
𝑒−𝛽𝑠 ∫

𝑡

0
𝑒𝑧𝑠 𝑑𝑧 𝑑𝑠

= 𝛼 ∫
∞

0
𝑒−𝛽𝑠 𝑒𝑠𝑡 − 1

𝑠
𝑑𝑠

= 𝛼 ∫
∞

0
(𝑒𝑠𝑡 − 1)𝑒−𝛽𝑠

𝑠
𝑑𝑠

which is the MGF for an IACP with jump density

𝑗(𝑥) = 𝛼𝑒−𝛽𝑥

𝑥
.

Since 𝑒−𝛽𝑥 ≈ 1 for small 𝑥, the corresponding jump distribution has an infinite expected
claim count (∫1

0
𝑑𝑥
𝑥 = ∞). We will see related jump distributions again in Part IV; they

underlie all the Tweedie and power variance function NEFs. (Note that the last integral
in the derivation of 𝜅 is only valid for 0 ≤ 𝑡 < 𝛽 and that it can’t be separated into two.
It relies on the fact that 𝑒𝑠𝑡 − 1 ≈ 𝑠𝑡 + 𝑂(𝑠2) to cancel 𝑒−𝛽𝑠𝑠−1 ≈ 𝑠−1 as 𝑠 ↓ 0.)

IACP distributions with jump distribution proportional to 𝐽(𝑥) = 𝑥−𝛼, 0 < 𝛼 < 1, are
called extreme stable distributions. (The associated jump densities are 𝑗(𝑥) = 𝛼𝑥−𝛼−1.)
They are extremely thick tailed and have no mean, and hence no variance. They are
called stable because they are stable under addition: they have the property that
𝑋1 + 𝑋2 ∼ 21/𝛼𝑋 where 𝑋, 𝑋1, 𝑋2 are iid. The normal distribution is the best known
stable distribution—in fact the only stable distribution with a finite variance. For the
normal the scaling constant is 𝛼 = 2. They are called extreme because they are maximally
asymmetric within the class of stable distributions—having only positive jumps— and not
because they are related to extreme value theory. There are analogous distributions with
both positive and negative jumps, which are not extreme, and another extreme family
with only negative jumps. Stable distributions have simple characteristic functions but no
simple closed-form density or distribution.

The IACP with jump distribution proportional to 𝑥−1/2 is called a Lévy stable 𝛼 = −1/2
distribution (although it was originally discovered by Holtsmark to solve a problem in
astronomy). It has a density

𝑓(𝑥) = 1√
2𝜋𝑥3

𝑒−1/2𝑥.

The right tail of the distribution decreases like 𝑥−1/2 and the distribution does not
have a mean. Its exponential tilts are inverse Gaussian and they have a jump density
𝑗(𝑥) ∝ 𝑥−3/2𝑒−𝛽𝑥. We will meet these distributions again in Section 1.11 when we discuss
NEF reciprocity.
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1.9 Compensated Infinite Activity CPs
For 𝛼 ≥ 1 the IACP construction appears to hit a wall: the small jumps of 𝑗(𝑥) = 𝑥−𝛼−1

become so frequent they have an infinite expectation. As a result, ∫𝜖
0

(𝑒𝑠𝑥 − 1)𝑗𝑛(𝑥)𝑑𝑥 ≈
∫𝜖
0

𝑠𝑥𝑗𝑛(𝑥)𝑑𝑥 will not converge as 𝑛 → ∞ and the argument we used above to construct
an IACP will fail. An extra level ingenuity is required to proceed.

The idea of centering and scaling appears repeatedly in probability. For example, the
central limit theorem applies to a sum of random variables after it is suitably shifted and
scaled. Here, we have a sequence of smaller and smaller jumps occurring with a Poisson
distribution with larger and larger expected frequency. The Poisson distribution with
a large mean is approximately normal and its coefficient of variation decreases to zero.
Thus the deviation from expected is very well-behaved. These properties suggest that
if we subtract the expected value of small losses, the resulting compensated IACP will
converge. Specifically, consider the sequence of MGFs

exp (∫
1

0
(𝑒𝑡𝑥 − 1 − 𝑡𝑥)𝑗𝑛(𝑥) 𝑑𝑥) .

If ∫1
0

𝑥2𝑗(𝑥) 𝑑𝑥 exists, then the sequence of integrals will converge too, and the resulting
MGF will define a variable 𝑋𝑐, with mean zero. We can use this new 𝑋𝑐 to define a
compensated IACP. Using compensated IACPs we can extend IACPs to 1 < 𝛼 < 2.

To summarize: a jump density 𝑗 with

1. finitely many large jumps ∫∞
1

𝑗(𝑥)𝑑𝑥 < ∞ and
2. finite second moment of small jumps ∫1

0
𝑥2𝑗(𝑥)𝑑𝑥 < ∞

defines a compensated IACP, whose MGF is the limit 𝑛 → ∞ of

exp (∫
∞

1
(𝑒𝑡𝑥 − 1)𝑗𝑛(𝑥) 𝑑𝑥) × exp (∫

1

0
(𝑒𝑡𝑥 − 1 − 𝑡𝑥)𝑗𝑛(𝑥) 𝑑𝑥) .

Our original condition that ∫1
0

𝑥𝑗(𝑥)𝑑𝑥 < ∞ implies condition 2, since 𝑥2 < 𝑥 for
0 < 𝑥 < 1. The two enumerated conditions are usually combined into one, stated as

∫
∞

0
(𝑥2 ∧ 1)𝑗(𝑥) 𝑑𝑥 < ∞.

A jump distribution satisfying this condition is called a Lévy measure.

The behavior of the generalized CP defined by jump distribution 𝐽 falls into one of three
cases.

1. When ∫1
0

𝑗(𝑥) 𝑑𝑥 < ∞ it is a finite activity CP variable, taking values 𝑥 ≥ 0.
2. When ∫1

0
𝑗(𝑥) 𝑑𝑥 = ∞ but ∫1

0
𝑥𝑗(𝑥) 𝑑𝑥 < ∞ it is an IACP, also taking values 𝑥 ≥ 0.

3. When ∫1
0

𝑥𝑗(𝑥) 𝑑𝑥 = ∞ but ∫1
0

𝑥2𝑗(𝑥) 𝑑𝑥 < ∞ it is a compensated IACP. Although
this distribution only has positive jumps, the presence of the compensation terms
means it can take any real value, positive or negative.
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When 𝐽(𝑥) = 𝑥−𝛼, case 2 occurs for 0 < 𝛼 < 1 and case 3 occurs for 1 < 𝛼 < 2. In
case 3, the process can creep down and assume negative value, even though it only has
positive jumps. Its left and right tail behaviors are very different. Negative outcomes are
the result of an infinite sum of high-frequency Poisson distributions having below-average
outcomes, and have a very thin tailed distribution, decaying like 𝑒−𝑘(𝑥/𝛼)𝛼/(𝛼−1) < 𝑒−𝑘(𝑥/𝛼)2

for 1 < 𝛼 < 2, see [3], part 14. Large positive outcomes, on the other hand, are the result
of a power-law jump density and have a tail like 𝑥−𝛼. In case 2, the mean does not exist.
In case 3, the right tail is thin enough for the mean to exist, even though the variance
does not. We will revisit these distribution in Part IV.

A realization of 𝑋𝑐 is determined as follows. Imagine a small particle that jumps forward
on a conveyor belt moving in the opposite direction at a constant speed equal to the
expected forward movement of the jumps. Thus on average the particle stays at the origin.
The variable 𝑋 gives the position after one unit of time. In case 2, the conveyor belt
and expected forward speed are both finite, so we can split the sum of the compensated
variable into an IACP and a separate sum of offsets, and both sums converge separately.
But case 3, the conveyor belt and the expected forward speed are both infinite: the sum
cannot be separated. The behavior is analogous to the fact that 1 − 1/2 + 1/3 − 1/4 + ⋯
converges (to log(2)) but neither 1 + 1/3 + 1/5 + ⋯ nor 1/2 + 1/4 + 1/6 + ⋯ converges.

Finally, what happens at 𝛼 = 2? A miracle: we get the normal distribution. Refining the
conveyor belt analogy, the particle moves forward continuously at infinite speed, with the
belt moving in the opposite direction at infinite speed. 𝑋 measures its position after one
unit of time. This dynamic underlies continuous Brownian motion.

But 𝛼 = 2 really is the wall: there is no way to piece together a jump density more
explosive at 𝑥 = 0 than 𝑥−3. As result, there is no Tweedie family member for 0 < 𝑝 < 1,
as we will see in Part IV.

We brushed over one case: 𝛼 = −1. Here we have the worst of both worlds. The large
jumps create right tail so thick the distribution does not have a mean. And the small
jumps are so frequent we need to use the compensated-sum trick. 𝑌 is an extreme Cauchy
distribution. The symmetric Cauchy, with jump size density proportional to |𝑥|2 for 𝑥 ≠ 0
is not an exponential family distribution because its density involves a term 1 + 𝑥2.

The famous Lévy-Khintchine theorem and associated Lévy-Itô decomposition say that
every Lévy process is determined by a drift, a Lévy distribution 𝐽 satisfying the two
conditions above, and the standard deviation of a Brownian motion component. These
components are essentially unique.

If all of this might seem abstract and far fetched, remember that the gamma and inverse
Gaussian distributions are IACPs, and we have identified their jump densities. The
lognormal, Pareto, inverse gamma, Weibull (0 < 𝛼 ≤ 1), and many other well-known
families of random variables, are also IACPs. The extreme stable distributions with
1 < 𝛼 < 2 have been used in finance to model log stock returns. If 𝑋 is such a variable,
then it has a very thick right tail, with distribution like 𝑥−𝛼 and a very thin left tail. As
a result 𝑌 = 𝑒−𝑋 is a well behaved distribution with all moments. It is called a finite
moment log stable distribution and has been used to model asset returns in markets
where prices drift up but crash down, see [6].
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1.10 Exponential Dispersion Models
An exponential dispersion model (EDM) is a collection of NEFs whose generator
densities form a Lévy process. There are two kinds of EDM.

Let 𝑍𝜈 be a Lévy process with density 𝑐(𝑦; 𝜈). The variable 𝜈 is called the index
parameter. 𝜈 is used in place of 𝑡 to be agnostic: it can represent expected loss volume
or time or a combination. In the finite variance case, the distribution of 𝑍𝜈 becomes less
dispersed as 𝜈 increases. Therefore it is natural to define 1/𝜈 as a dispersion parameter.
For Brownian motion the dispersion parameter is usually denoted 𝜎2. Throughout
𝜎2 = 1/𝜈 and the two notations are used inter-changeably. 𝑍𝜈 and 𝜈𝑍1 have the same
mean, but the former has varying coefficient of variation CV(𝑍1)/

√
𝜈 and the latter a

constant CV. 𝑍𝜈 is more (𝜈 < 1) or less (𝜈 > 1) dispersed than 𝑍1. The difference between
𝑍𝜈 and 𝜈𝑍1 are illustrated in the lower two panels of Figure 1.

The first kind of EDM is an additive exponential dispersion model. It comprises the
NEFs associated with the generator distribution 𝑍𝜈. It has generator density 𝑐(𝑧; 𝜈) and
cumulant generator 𝜅𝜈(𝜃) = 𝜈 𝜅(𝜃). Its members are all exponential tilts of 𝑐(𝑧; 𝜈) as 𝜈
varies. A representative distribution 𝑍 ∼ DM∗(𝜃, 𝜈) has density

𝑐(𝑧; 𝜈)𝑒𝜃𝑧−𝜈 𝜅(𝜃).

As 𝜈 increases, the mean of the generator distribution increases and it becomes less
dispersed. The same is true for 𝑍. The cumulant generating function of 𝑍 is

𝐾(𝑡; 𝜃, 𝜈) = 𝜈(𝜅(𝑡 + 𝜃) − 𝜅(𝜃)).

If 𝑍𝑖 ∼ DM∗(𝜃, 𝜈𝑖) and 𝑍 = ∑ 𝑍𝑖, then the cumulant generating function for 𝑍 is
(∑𝑖 𝜈𝑖)(𝜅(𝑡+𝜃)−𝜅(𝜃)) showing 𝑍 has distribution DM∗(𝜃, ∑𝑖 𝜈𝑖) within the same family,
explaining why the family is called additive. Additive exponential dispersions are used to
model total losses.

The second kind of EDM is a reproductive exponential dispersion model. It comprises
the NEFs associated with the generator distribution of 𝑌𝜈 = 𝑍𝜈/𝜈. 𝑌𝜈 has a mean
independent of 𝜈, but this independence is illusionary since the mean can be adjusted
by re-scaling 𝜈. In the finite variance case, 𝑌𝜈 has decreasing CV as 𝜈 increases. The
densities of 𝑌 and 𝑍 are related by 𝑓𝑌(𝑦) = 𝜈𝑓𝑍(𝜈𝑦). Hence a representative has density

𝑓𝑌(𝑦) = 𝜈𝑐(𝜈𝑦, 𝜈)𝑒𝜈(𝜃𝑦−𝜅(𝜃)).

The cumulant generating function of 𝑌 is

𝐾(𝑡; 𝜃, 𝜈) = 𝜈(𝜅(𝑡/𝜈 + 𝜃) − 𝜅(𝜃)).

To end this section, let’s work out the impact of tiling on the Lévy measure 𝐽. In the last
section, we saw that the cumulant generator of 𝑍 has the form

𝜅(𝜃) = 𝑎𝜃 + ∫
1

0
(𝑒𝜃𝑥 − 1 − 𝜃𝑥) 𝑗(𝑥) 𝑑𝑥 + ∫

∞

1
(𝑒𝜃𝑥 − 1) 𝑗(𝑥) 𝑑𝑥

where 𝑎 is a location (drift) parameter. Rather than split the integral in two, write it as

∫
∞

0
(𝑒𝜃𝑥 − 1 − 𝜃𝑥1(0,1)(𝑥)) 𝑗(𝑥) 𝑑𝑥.
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where 1(0,1) is the indicator function on (0, 1). The 𝜃-tilt of 𝑍 has cumulant generating
function

𝐾𝜃(𝑠) = 𝜅(𝑠 + 𝜃) − 𝜅(𝜃)

= 𝑎𝑠 + ∫
∞

0
(𝑒(𝑠+𝜃)𝑥 − 𝑒𝜃𝑥 − 𝑠𝑥1(0,1)(𝑥)) 𝑗(𝑥) 𝑑𝑥

= 𝑎𝑠 + ∫
∞

0
(𝑒𝑠𝑥 − 1 − 𝑠𝑒−𝜃𝑥𝑥1(0,1)(𝑥)) 𝑒𝜃𝑥𝑗(𝑥) 𝑑𝑥.

The factor 𝑒−𝜃𝑥 in the compensation term can be combined with 1(0,1), resulting in an
adjustment to the drift parameter. Thus the Lévy distribution of the tilted distribution is
𝑒𝜃𝑥𝑗(𝑥).
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Figure 1: The impact of shifting, scaling, growth and shaping on a gamma density.

1.11 Building New Models From Old
Building complex models from simple ones is a time-honored method. It keeps the number
of fundamentally different models to a minimum. For example, all normal distributions
are shifted and scaled versions of a standard normal. Scaling and shaping are the same
operation for a normal distribution, but in general they are not. Lognormal and gamma
distributions have an additional shape parameter. Various programming languages exploit
the shift/scale/shape paradigm to order the menagerie of probability distributions.

In this section we describe four ways to make a new NEF from an old one:

• shifting,
• scaling,
• shaping, and
• reciprocity.
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The effect of the first three of these transformations is illustrated in Figure 1. In every
case the underlying distribution is a gamma.

By definition, exponential tilting operates within a NEF, c.f., the NEF Circle. It does not
create a new NEF.

A distortion operator, such as the Wang and proportional hazard transform, is also familiar
to actuaries. The impact of most distortions on NEFs is unclear. There are exceptions.
For example, the Wang transform acts as an exponential tilt on normal variables.

This section describes the impact of each transformation on the variance function. It
gives several examples of reciprocity, which turns out to be related to surplus growth or
probability of default.

Throughout this section, 𝑋 and 𝑋1 have means 𝑚 and 𝑚1 and variance functions 𝑉 and
𝑉1. They generate NEFs 𝐹 and 𝐹1 with mean domains, the interior of the set of possible
means, 𝑀 and 𝑀1. The NEF is uniquely specified by the distribution of 𝑋 or by 𝑀𝐹 and
𝑉.

1.11.1 Affinities: Shift and Scale

Transformations such as 𝑋1 = 𝑎𝑋 + 𝑏 are called affinities.

For a shift 𝑋1 = 𝑋 + 𝑏 and 𝑚1 = 𝑚 + 𝑏. Therefore

𝑉1(𝑚1) = 𝑉 (𝑚1 − 𝑏).

For a scale 𝑋1 = 𝑎𝑋, 𝑚1 = 𝑎𝑚 and 𝑚 = 𝑚1/𝑎. Therefore

𝑉1(𝑚1) = 𝑎2𝑉 (𝑚1/𝑎)

since Var(𝑎𝑋) = 𝑎2Var(𝑋).

For a general affinity 𝑋1 = 𝑎𝑋 + 𝑏

𝑉1(𝑚1) = 𝑎2𝑉 (𝑚1 − 𝑏
𝑎

) .

The mapping 𝑋 ↦ 𝑎𝑋 + 𝑏 gives a one-to-one mapping between 𝐹 and 𝐹1.

1.11.2 Shape, Power, or Division

If 𝑋𝜈, 𝜈 ≥ 0, is a Lévy process then E[𝑋𝜈] = 𝜈E[𝑋1] and Var(𝑋𝜈) = 𝜈Var(𝑋1). Therefore,
if 𝑉𝜈 and 𝑉1 are the respective variance functions of 𝑋𝜈 and 𝑋1 then we get the shape
transformation

𝑉𝜈(𝜇) = Var(𝑋𝜈) = 𝜈Var(𝑋1) = 𝜈𝑉1 (𝜇
𝜈

)

The shape transformation can be used in another way. Rather than consider 𝑋𝜈 as a
family with increasing means we can consider 𝑋𝜈/𝜈, which has a constant mean as 𝜈
varies. If 𝑌𝜈 = 𝑋𝜈/𝜈 then

𝑉𝜈(𝜇) = Var(𝑌𝜈) = Var(𝑋𝜈)/𝜈2 = Var(𝑋1)/𝜈 = 𝑉1(𝜇)/𝜇.
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𝑋𝜈 corresponds to the additive EDM that models total losses from a growing portfolio,
and 𝑌𝜈 to the reproductive EDM that models the pure premium or loss ratio.

The power or division terminology arises by writing 𝑋𝜈 as the 𝜈-fold convolution of 𝑋1
using the 𝜈 power of the MGF. Division arises from the ability to “take roots” of an
infinitely divisible distribution. The insurance meanings are losses over multiple periods
and losses over sub-periods.

1.11.3 Reciprocity

Reciprocity is a more profound way to relate two NEFs. We define it first and then
illustrate with several examples.

Given a NEF, define Θ̃ to be those 𝜃 ∈ Θ so that 𝜅′(𝜃) > 0, i.e., canonical parameters
corresponding to distributions with a positive mean, and define 𝑀+

𝐹 to be the image of Θ̃
under the mean value mapping 𝜅′. Thus 𝜅′ is a bijection between Θ̃ and 𝑀+

𝐹 . NEFs 𝐹
and 𝐹1 define a reciprocal pair if

1. 𝜃 ↦ −𝜅(𝜃) maps Θ̃ to Θ̃1,
2. 𝜃 ↦ −𝜅1(𝜃) maps Θ̃1 to Θ̃, and
3. −𝜅1(−𝜅(𝜃)) = 𝜃 for all 𝜃 ∈ Θ̃.

For a reciprocal pair, the left-hand diagram commutes. The meaning, starting from 𝜃 and
𝜃1, is illustrated in the two right hand side diagrams.

Differentiating −𝜅1(−𝜅(𝜃)) = 𝜃 shows 𝜅′
1(−𝜅(𝜃))𝜅′(𝜃) = 1, i.e., the diagram commutes.

The variance functions of a reciprocal pair satisfy the important reciprocity formula

𝑉 (𝑚) = 𝑚3𝑉1 ( 1
𝑚

) ,

which follows by differentiating 𝜅′
1(−𝜅(𝜃))𝜅′(𝜃) = 1 again and noting 𝑚 = 𝜅′(𝜃) and

𝜅′
1(−𝜅(𝜃)) = 1/𝑚 to obtain

𝜅″
1(−𝜅(𝜃))(𝜅′(𝜃))2 = 𝜅′

1(−𝜅(𝜃))𝜅″(𝜃) ⟹ 𝑉1 ( 1
𝑚

) 𝑚2 = 1
𝑚

𝑉 (𝑚).

Unlike the formulas for affinities and shaping, the reciprocal variance transformation
involves the mean outside 𝑉 (⋅).

The variance function reciprocity formula shows that the set of NEFs with polynomial
variance functions of order less than or equal to three is closed under reciprocity. This
fact allowed such NEFs to be completely classified by [7]. Classifying all NEFs with a
polynomial variance function is a difficult problem, though it is known that any polynomial
with positive coefficients that vanishes at 𝑚 = 0 is the variance function of some NEF with
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positive mean domain [7, Corollary 3.3]. If 𝑉 (0) = 0 then the NEF must be supported on
a subset of the positive or negative reals because of the non-degenerate requirement.

If 𝑉 (0) = 0 let 𝑎 ∶= lim𝑚↓0 𝑉 (𝑚)/𝑚 be the right derivative of 𝑉 at zero. If 𝑎 = 0 then
the corresponding NEF is continuous on the positive reals, but can have a mass at zero
(Tweedie). If 𝑎 > 0 then the NEF is discrete and 𝑎 is the smallest positive value with
positive probability. For standard counting distributions 𝑎 = 1. Thus polynomial variance
functions of the form 𝑉 (𝑚) = 𝑚𝑊(𝑚), 𝑊(0) ≠ 0, correspond to counting distributions
(Poisson 𝑉 (𝑚) = 𝑚, negative binomial 𝑚(𝑚 − 1), binomial 𝑚(𝑚 + 1), etc.) and those
of the form 𝑚2𝑊(𝑚) to continuous distributions (gamma 𝑉 (𝑚) = 𝑚2, inverse Gaussian
𝑉 (𝑚) = 𝑚3 and Kendall-Ressel 𝑚2(1 + 𝑚)). The Tweedie family shows that fractional
powers are also possible.

In general, reciprocity is mysterious. But in some cases it has a beautiful interpretation as
the first hitting time distribution for a Lévy process, as follows. In order to use standard
notation we use 𝑡 in place of 𝜈 to index processes, and we change signs of jumps so they
are negative rather than positive—premium and income are positive, losses are negative.

Let 𝑋𝑡 be a spectrally negative Lévy process, with no positive jumps. The Lévy
measure of 𝑋𝑡 is supported on the negative reals. 𝑋𝑡 could be any of the following plus
a positive drift: Brownian motion, an infinite activity process, or a compound Poisson
process. 𝑋𝑡 models the surplus process: cumulative premium minus cumulative losses.
Losses are negative jumps and premium is a continuous positive trend.

Define the first hitting time for level 𝑥 to be 𝑇𝑥 = inf{𝑡 > 0 ∣ 𝑋𝑡 ≥ 𝑥}. Since 𝑋𝑡 has no
upward jumps, 𝑋𝑇𝑥

= 𝑥: it can’t jump over 𝑥, it can only jump downwards. Next, 𝑇𝑥 is
infinitely divisible. For any 𝑛, 𝑇𝑥 is the sum of 𝑛 independent copies of 𝑇𝑥/𝑛, because
the Markov property of 𝑋𝑡 applies at a stopping time. We can reset 𝑋𝑡 at the random
time 𝑇𝑥/𝑛. As a result, 𝑇𝑥, 𝑥 ≥ 0, is a strictly increasing Lévy process. Such processes
are called subordinators.

We can identify the distribution of 𝑇𝑥. By assuming E[𝑋1] ≥ 0 (i.e., premium exceeds
expected claims, so the surplus process is increasing on average) it is guaranteed that 𝑋𝑡
will hit any positive level 𝑥 in finite time, Pr(𝑇𝑥 < ∞) = 1. Since 𝑋𝑡 is a Lévy process,
its moment generating function E[𝑒𝜃𝑋𝑡 ] = 𝑒𝑡 𝜅𝑋(𝜃) where 𝜅𝑋 is the cumulant generating
function of 𝑋1, independent of 𝑡.

The exponential tilt of 𝑋𝑡 has density 𝑒𝜃𝑥−𝑡𝜅𝑋(𝜃)𝑓𝑡(𝑥), where 𝑓𝑡 is the density of 𝑋𝑡. Since
a density integrates to 1, we have

E[𝑒𝜃𝑋𝑡−𝑡𝜅𝑋(𝜃)] = ∫ 𝑒𝜃𝑥−𝑡𝜅𝑋(𝜃)𝑓𝑡(𝑥) 𝑑𝑥 = 1

for all 𝑡 ≥ 0. Therefore the process 𝑒𝜃𝑋𝑡−𝑡𝜅𝑋(𝜃), 𝑡 ≥ 0, is a martingale. Martingales are a
generalization of a constant process. They have no drift and a constant mean expectation.
The lack of drift also holds if we stop the process at a random stopping time2 Stopping

2The Optional Stopping Theorem says you can’t beat a series of fair bets by choosing a clever stopping
time. The famous doubling strategy shows there are limitations: the sequence of bets must be bounded.
If 𝑋𝑡∧𝑇 is a bounded and 𝑇 is a stopping time with finite expectation then E[𝑋𝑇] = E[𝑋0]. In the
present case, the process exp(𝛽𝑋𝑡 − 𝜆𝑡) is bounded for 0 ≤ 𝑡 ≤ 𝑇𝑥 (because 𝐵𝑡 ≤ 𝑥). However, E[𝑇 ]
could be infinite. To get around that, work with 𝑇𝑛 = 𝑇 ∧ 𝑛 and let 𝑛 → ∞.
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𝑒𝜃𝑋𝑡−𝑡𝜅𝑋(𝜃) at 𝑇𝑥 and remembering 𝑋𝑇𝑥
= 𝑥 produces an expression for the MGF of 𝑇𝑥

E[𝑒𝜃𝑥−𝑇𝑥𝜅𝑋(𝜃)] = 1 ⟹ 𝑀𝑇𝑥
(−𝜅𝑋(𝜃)) ∶= E[𝑒−𝜅𝑋(𝜃)𝑇𝑥 ] = 𝑒−𝜃𝑥.

Taking logs of both sides gives

𝜅𝑇𝑥
(−𝜅𝑋(𝜃)) = −𝜃𝑥

where 𝜅𝑇𝑥
is the cumulant generating function of 𝑇𝑥. Since 𝑇𝑥 is infinitely divisible we

know that 𝜅𝑇𝑥
= 𝑥 𝜅𝑇, where 𝜅𝑇 is the cumulant generating function of 𝑇1. As a result

−𝜅𝑇(−𝜅𝑋(𝜃)) = 𝜃,

showing 𝑇𝑥 and 𝑋𝑡 define reciprocal NEFs, and explaining the name. The formula relies
on the fact that 𝑋𝑡 is a Lévy process with no positive jumps and E[𝑋1] ≥ 0.

1.11.3.1 Example: Normal-Inverse Gaussian.

Here is the classic example of reciprocity. Let 𝑋𝑡 = 𝑐𝑡 + 𝜎𝐵𝑡 be a Brownian motion
with a positive trend, so 𝑇𝑥 is guaranteed to be finite for 𝑥 ≥ 0. 𝑋𝑡 is normal with
mean 𝑐𝑡 and variance 𝑡, by definition of a Brownian motion. The cumulant generator
𝜅𝑋(𝜃) = log E[𝑒𝜃𝑋𝑡 ] = log E[𝑒𝜃𝜎𝐵𝑡+𝑐𝑡𝜃] = 𝑡(𝑐𝜃 + 𝜎2𝜃2/2) by the well-known formula for
the mean of a lognormal distribution.

Reciprocity shows

𝜅𝑇(−𝜅𝑋(𝜃)) = 𝜅𝑇 (−𝑐𝜃 − 𝜎2𝜃2

2
) = −𝜃.

Inverting, using the quadratic formula, shows

𝜎2𝜃2

2
+ 𝑐𝜃 + 𝑦 = 0 ⟹ 𝜃 = −𝑐 + √𝑐2 − 2𝑦𝜎2

𝜎2 ,

since the argument for the Laplace transform must be positive and the other root is
negative. Therefore the cumulant generating function of 𝑇1 is

𝜅𝑇(𝑦) = 𝑐 − √𝑐2 − 2𝑦𝜎2

𝜎2 = 𝑐
𝜎2 (1 − √1 − 2𝜎2𝑦

𝑐2 ) = 1
𝜇𝜎2 (1 − √1 − 2𝜇2𝜎2𝑦)

where 𝜇 = 1/𝑐. Consulting a table of Laplace transforms, reveals this is the cumulant
generating function for an inverse Gaussian distribution with mean 𝜇 and variance 𝜇3𝜎2. 𝜆
is used for 1/𝜎2 in [8]. This reciprocal relationship between cumulant generating functions
is why Tweedie chose the named inverse Gaussian (op. cite p. 250). The mean makes
sense: if we are traveling at speed 𝑐 then it should take time 𝑥/𝑐 to travel distance 𝑥.

If 𝑐 = 0, so there is no drift, and 𝜎2 = 1, then 𝜅𝑇(𝑦) = −
√

−2𝑦, which is the cumulant
generating function for a Lévy stable distribution with 𝛼 = 1/2. In the absence of drift,
the waiting time 𝑇1 has infinite expectation: you are guaranteed to get to level 1, just not
quickly!

How are these facts related to exponential family distributions? By the inverse relation-
ship of cumulant generating functions, the normal and inverse Gaussian are reciprocal
distributions. Therefore the variance functions are related by 𝑉1(𝑚) = 𝑚3𝑉 (𝑚) = 𝜎2𝑚3,
as expected. �
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1.11.3.2 Example. Poisson-Exponential.

If 𝑋𝑡 is a Poisson process with rate 𝜆, meaning E[𝑋𝑡] = 𝜆𝑡, then the waiting time 𝑇1
is exponential, as is well known. The Poisson cumulant generating function is 𝜅𝑋(𝜃) =
𝜆(𝑒𝜃 − 1) and the exponential’s is 𝐾𝑇(𝜃) = − log(1 − 𝜃/𝜆). We can check

−𝜅𝑇(−𝜅𝑋(𝜃)) = log (1 + 𝜆(𝑒𝜃 − 1)
𝜆

) = 𝜃.

Variance reciprocity says 𝑉𝑇(𝑚) = 𝑚3𝑉𝑋(1/𝑚) = 𝑚2. �

It is also possible to give an explanation of reciprocity as a first hitting time for a random
walk, indexed by 𝑡 = 0, 1, 2, …, rather than by continuous 𝑡 ≥ 0. For 𝑋𝑖 iid discrete with
0 < E[𝑋𝑖] ≤ 1 and Pr(𝑋𝑖 = 0) > 0 define 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛 and 𝑌𝑛 = 𝑛 − 𝑆𝑛. Then 𝑌𝑛
is a discrete version of a spectrally negative Lévy process, it models the cumulative surplus
process of a single policy with annual premium 1 and integer valued losses given by 𝑋.
We can consider the distribution of 𝑇1 the first hitting time for level 1. It is possible to
show that 𝑇1 is infinitely divisible and to write down its distribution, see [9] and [7]. It
is more natural to consider 𝐺 ∶= 𝑇1 − 1, which is supported on 0, 1, 2, …. The discrete
reciprocity formula is

𝑉𝐺(𝑚) = (𝑚 + 1)3𝑉𝑋 ( 𝑚
𝑚 + 1

) .

𝐺 is infinitely divisible since 𝑇1 is, and so using the shape transformation there is a 𝐺𝑡
with variance function

𝑉𝐺𝑡
(𝑚) = 𝑡𝑉𝐺 (𝑚

𝑡
) = 𝑡 (𝑚

𝑡
+ 1)

3
𝑉𝑋 ( 𝑚/𝑡

𝑚/𝑡 + 1
) = (𝑚 + 𝑡)3

𝑡2 𝑉𝑋 ( 𝑚
𝑚 + 𝑡

) .

This approach yields distributions including the generalized Poisson (Abel) and generalized
negative binomial distributions. �

1.11.3.3 Example. Poisson-Generalized Poisson Discrete Model

Here is how random walk reciprocity works when 𝑋 is Poisson. 𝑋 models an integer
valued claim amount process. Assume 𝜆 = E[𝑋] < 1 and the annual premium is 1. At
each 𝑛 = 1, 2, 3, … premium is collected and 𝑋 is paid, resulting in a net surplus change
of 1 − 𝑋. Initial surplus is zero. 𝑇1 is the waiting time until accumulated surplus first
equals 1 and we want to determine the distribution of the shifted distribution 𝑇1 − 1, with
support 0, 1, 2, …. We drop subscripts when equal to 1. This problem is opposite to the
usual problem of time until default. By definition, the cumulant generating function for
the surplus 𝑌 is

𝜅𝑌𝑡
(𝜃) = log E[𝑒𝜃𝑡−𝜃𝑆𝑡 ] = 𝑡 (𝜃 + 𝜆(𝑒−𝜃 − 𝜆)) .

A discrete version of the first hitting time argument says

−𝜅𝑇(−𝜅𝑌(𝜃)) = −𝜅𝑇(−𝜃 − 𝜆(𝑒−𝜃 − 1)) = 𝜃.

Therefore −𝜅𝑇(𝑦) is given by the solution to −𝜃 − 𝜆(𝑒−𝜃 − 1) = 𝑦 in 𝜃. Set

𝑤 = 𝑒−𝜃, 𝑧 = 𝑒𝑦, and 𝑔(𝑤) = 𝑒𝜆(𝑤−1).

Then
𝑤𝑒−𝜆(𝑤−1) = 𝑒𝑦 ⟺ 𝑤 = 𝑧𝑔(𝑤),

18



which can be solved using the Lagrange inversion formula, [10],

𝑤(𝑧) = ∑
𝑛≥1

𝑧𝑛

𝑛!
{ 𝑑𝑛−1

𝑑𝑤𝑛−1 𝑔(𝑤)𝑛}
𝑤=0

= ∑
𝑛≥1

𝑧𝑛

𝑛!
(𝜆𝑛)𝑛−1𝑒−𝑛𝜆.

Thus 𝜅𝑇(𝑦) = −𝜃 = log(𝑤(𝑦)), implying 𝑀𝑇(𝑦) = 𝑤(𝑒𝑦). As a result, 𝑤(𝑧) is the
probability generating function3 of 𝑇 and Pr(𝑇 = 𝑛) is the coefficient of 𝑧𝑛 in 𝑤(𝑧)

Pr(𝑇 = 𝑛) = 𝑒−𝜆𝑛

𝑛!
(𝜆𝑛)𝑛−1.

𝑇 is supported on 1, 2, …. For the shifted distribution 𝑇0 = 𝑇 − 1

Pr(𝑇0 = 𝑛) = 𝑒−𝜆(𝑛+1)

(𝑛 + 1)!
(𝜆(𝑛 + 1))𝑛 = 𝑒−𝜆 (𝜆𝑒−𝜆)𝑛+1

𝑛!
𝜆𝑛(𝑛 + 1)𝑛−1.

More generally, let the premium rate equal 𝑟 and suppose E[𝑋] = 𝜆 < 𝑟. By considering
time steps of size 1/𝑟 we can reduce to the case where the premium rate is 1 and the
frequency is 𝜆/𝑟 < 1, showing there is no loss of generality assuming 𝑟 = 1. Let 𝜈 > 0
be an arbitrary surplus level and 𝑇𝜈 be its first hitting time. The standard cumulant
generating function argument is the same, showing

𝜅𝑇𝜈
(−𝜃 − 𝜆(𝑒−𝜃 − 1)) = −𝜈𝜃.

To evaluate 𝜅𝑇𝜈
(𝑦) solve −𝜃 − 𝜆(𝑒−𝜃 − 1)) = 𝑦 for 𝜃. Exponentiate to convert the original

equation into 𝑤(𝑧) = 𝑧𝑔(𝑤(𝑧)). Once we have a solution, it follows that

𝜅𝑇𝑣
(𝑦) = −𝜈𝜃 = 𝜈 log(𝑤(𝑒𝑦)).

Hence the probability generating function of the 𝑇𝜈 is

𝑃𝜈(𝑧) = 𝑒𝜅𝑇𝑣(log(𝑧)) = 𝑒𝜈 log(𝑤(𝑧)) = 𝑤(𝑧)𝜈.

Finally, since we are interested in the left-shift 𝑇0 = 𝑇 − 𝜈, apply the advanced form of
the Lagrange Inversion Formula4 with 𝐹(𝑧) = 𝑔(𝑧)𝜈. Observe that

𝑔𝑛 𝜕𝐹
𝜕𝑤

= 𝑔𝑛 𝜕𝑔𝜈

𝜕𝑤
= 𝜈𝑔𝑛+𝜈−1𝑔′ = 𝜈

𝑛 + 𝜈
𝜕𝑔𝑛+𝜈

𝜕𝑤
.

Applying the advanced Lagrange inversion formula, these ingredients serve up

𝑃(𝑧) = 𝑔(0)𝜈 + ∑
𝑛≥1

𝑧𝑛

𝑛!
𝜈

𝑛 + 𝜈
{ 𝜕𝑛

𝜕𝑤𝑛 𝑔(𝑤)𝑛+𝜈}
𝑤=0

= 𝑒−𝜆𝜈 + ∑
𝑛≥1

𝑧𝑛

𝑛!
𝜈

𝑛 + 𝜈
(𝜆(𝑛 + 𝜈))𝑛 𝑒−𝜆(𝑛+𝜈)

= 𝑒−𝜆𝜈 ∑
𝑛≥0

𝑧𝑛 𝜈(𝑛 + 𝜈)𝑛−1

𝑛!
(𝜆𝑒−𝜆)𝑛

= 𝑒−𝜃 ∑
𝑛≥0

𝑧𝑛 𝜃(𝑛𝜆 + 𝜃)𝑛−1

𝑛!
𝑒−𝜆𝑛.

3The probability generating function of a discrete distribution with Pr(𝑁 = 𝑛) = 𝑝𝑛 is 𝑃(𝑧) =
∑𝑛 𝑝𝑛𝑧𝑛.

4𝑔(𝑧) achieves the left-shift and 𝜈 power is convolution, giving the hitting probability to the level
𝜈 rather than 1. Since 𝑇𝜈 ≥ 𝜈 the net effect of this transformation is to shift left by 𝜈, resulting in a
distribution with support on 0, 1, 2, … .
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The 𝑒−𝜆𝜈 term gives the probability of moving directly from 0 to 𝜈 with no claims at
all, and 𝜆𝑒−𝜆 is the probability of one claim. In the last line 𝜃 = 𝜈𝜆. This distribution
is called Consul’s generalized Poisson, a Lagrangian Poisson, or a shifted Tanner-Borel
distribution. It is a two parameter distribution, depending on 𝜈 > 0 and 0 ≥ 𝜆 ≤ 1. The
mean and variance are

E[𝑇𝜈] = 𝜈𝜆
1 − 𝜆

and Var[𝑇𝜈] = 𝜈𝜆
(1 − 𝜆)3 .

As 𝜆 ↑ 1 it becomes very thick tailed: the loss ratio is close to 100% and surplus accretes
very slowly.

When 𝜈 = 1 we can determine the variance function following the path of the derivation
from Poisson 𝑋 with 𝑉𝑋(𝑚) = 𝑚, to change in surplus 1 − 𝑋 with 𝑉 (𝑚) = 1 − 𝑚, to
reciprocal 𝐺1 with 𝑉1(𝑚) = 𝑚3𝑉 (1/𝑚), and finally shifted 𝐺 = 𝐺1 − 1 with

𝑉𝐺(𝑚) = 𝑉1(𝑚 + 1) = (𝑚 + 1)3 (1 − 1
𝑚 + 1)

) = 𝑚(𝑚 + 1)2.

For 𝜈 > 1 use the fact that 𝑇𝜈 is infinitely divisible to apply the shape transformation to
𝐺 to obtain

𝑉𝐺𝜈
(𝑚) = 𝜈𝑉𝐺 (𝑚

𝜈
) = 𝑚 (1 + 𝑚

𝜈
)

2
,

consistent with the stated mean and variance. Notice that for very small 𝑚, 𝑉𝐺𝜈
behaves

like a Poisson, as does the underlying distribution.

If 𝜆 ↓ 0 and 𝜈 ↑ ∞ so that 𝜃 = 𝜆𝜈 is constant then density shows the generalized Poisson
reduces to a Poisson(𝜃). For example, if 𝜆 = 1/𝑚 and 𝜈 = 𝜃𝑚 then although there will be
hardly any periods with claims, there are a very large number of periods and on average 𝜃
claims. The waiting time is a sum of 𝜈 Poisson 𝜆 variables, a Poisson 𝜃.

There is a recursive formula for the event probabilities.

The generalized Poisson is related to queuing theory. A single-server queue has 𝜈 customers.
New customers arrive randomly at rate 𝜆 per unit time and are served in a constant unit
time. If 𝜆 < 1 the queue shrinks on average. 𝑇𝜈 is the distribution of the number of
customers who are served before the queue vanishes or, equivalently, how long until the
queue vanishes.

In the derivation 𝜈 is an integer, but we can re-interpret the problem in continuous time
to remove this constraint. Simply replace 𝑌𝑛 = 𝑛 − 𝑆𝑛 with 𝑌𝑡 = 𝑡 − 𝑁𝑡 where 𝑁𝑡 is
a Poisson process with intensity 𝜆. The same derivation applies, allowing 𝜈 > 0. In
insurance terms, the discrete model applies when solvency regulation and accounting is
performed at the end of each period and the continuous model applies when there is
continuous solvency monitoring. The UK regulatory regime requires management monitor
solvency continuously. �

1.11.3.4 Example. Kendall-Ressel Family

The Kendall-Ressel family has variance function

𝑉 (𝑚) = 𝑚2

𝜆
(1 + 𝑚

𝜆
) .
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It is the reciprocal of 𝑋𝑡 = 𝑡−𝐺𝑡 where 𝐺𝑡 is a gamma process with density 𝑥𝑡−1𝑒−𝑥/Γ(𝑡).
Insurance interpretation: 𝑋𝑡 is accumulated profit from an inflow of premium 1 per unit
time and a cumulative claims process 𝐺𝑡. Let 𝑇𝑥 be the waiting time until accumulated
surplus equals 𝑥 > 0. As usual, reduce to premium of 1 per unit time by adjusting the
time period. E[𝐺1] = 1 is allowable (oscillating) but tilts with mean < 1 are better. By a
shaping argument, assume 𝑥 = 1. The variance function is derived

𝑉𝐺(𝑚) = 𝑚2 ↦ 𝑉𝑋(𝑚) = (1 − 𝑚)2

↦ 𝑉𝑇(𝑚) = 𝑚3𝑉𝑋 ( 1
𝑚

) = 𝑚(𝑚 − 1)2

↦ 𝑉𝑇 −1(𝑚) = 𝑚2(1 + 𝑚)

with the 𝑋 to 𝑇 step coming from reciprocity. The density can be derived using a clever
formula due to Borovkov and Zolotarev, see [11]. If 𝑋𝑡 is a spectrally negative Lévy
process and 𝑇𝑥 is the first hitting time of level 𝑥 > 0, and if both 𝑋𝑡 and 𝑇𝑥 have densities
𝑓𝑋𝑡

, 𝑓𝑇𝑥
, then

𝑓𝑇𝑥
(𝑡) = 𝑥

𝑡
𝑓𝑋𝑡

(𝑥).

There is also a discrete version of this formula, where 𝑓 is interpreted as the probability
mass function, [10].

Example. For 𝑋𝑡 = 𝑐𝑡 + 𝜎𝐵𝑡, a Brownian motion with drift, the Borovkov-Zolotarev
formula gives an expression for the density of the inverse Gaussian waiting time:

𝑓𝑇𝑥
(𝑡) = 𝑥

𝑡
𝑓𝑋𝑡

(𝑥) = 𝑥√
2𝜋𝑡3𝜎

exp (−(𝑥 − 𝑐𝑡)2

2𝜎2𝑡
) .

�

Returning to 𝑋𝑡 = 𝑡 − 𝐺𝑡 we have

𝑓𝑋𝑡
(𝑥) = 𝑓𝐺𝑡

(𝑡 − 𝑥) = (𝑡 − 𝑥)𝑡−1

Γ(𝑡)
𝑒−(𝑡−𝑥).

The process 𝑇𝑥 ≥ 𝑥 (𝑇𝑥 = 𝑥 occurs when there are no claims) and so it is more natural to
consider 𝑅𝑥 ∶= 𝑇𝑥 − 𝑥 which defines the Kendall-Ressel distribution, [7], [12]. Applying
Borovkov-Zolotarev gives its density

𝑓𝑅𝑥
(𝑡) = 𝑓𝑇𝑥

(𝑥 + 𝑡) = 𝑥
𝑡

𝑓𝑋𝑡
(𝑥) = 𝑥

𝑥 + 𝑡
𝑡𝑥+𝑡−1

Γ(𝑥 + 𝑡)
𝑒−𝑡 = 𝑥𝑡𝑥+𝑡−1

Γ(𝑥 + 𝑡 + 1)
𝑒−𝑡.

Remember (𝑥 + 𝑡)Γ(𝑥 + 𝑡) = Γ(𝑥 + 𝑡 + 1).

The Kendall-Ressel distribution is infinitely divisible. Opposite to the stable and Tweedie
families, that have a simple cumulant generating function but no elementary expression
for their densities, the Kendall-Ressel has a simple density but no simple expression for
its cumulant generating function and therefore no simple expression for the density in the
NEF it generates. Solving 𝜅′(𝜃) = 𝜇 necessitates solving the equation 𝜃 − log(1 + 𝜃)) = 𝑦
which has no closed form. Thus, there is no simple form for the NEF it generates in the
canonical parameterization. However, [12], shows there is a simple expression in terms of
the mean value parameterization. �

Table 1 tabulates various common variance functions and how they are related through
reciprocity.
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Table 1: Relationship of common NEFs in terms of their variance functions. FHT = first
hitting time. LM refers to the numbering scheme in [7].

LM# Base Distribution, X VX(m) λVX(m/λ) m3VXλ
(1/m) VR1(m + 1) νVG1(m/ν) Comments

Variable X = X1 Xλ Rλ G1 = R1 − 1 Gν

Transformation shape reciprocal shift shape

1 Gaussian 1 λ λm3 λ = σ2, inverse Gaussian FHT

2 Poisson m m m2 Generated by PGF et. Gamma
FHT; no shape, ODP is scale

3 Binomial m(1 − m) m(1 − m
N ) N must be integer, 0 ≤ m ≤ N ,

not ID

4 Negative binomial m(1 + m) m(1 + m
a ) Generated by PGF (1 − z)−a.

Gamma FHT; no shape, ODP is
scale

5 Gamma m2 m2/λ FHT for Poisson process

6 GHS 1 + m2 λ(1 + m2/λ2)

n/a Tweedie p mp λ1−pmp p = 3/2 is self-reciprocal

7 1−Poisson 1 − m m2(m − 1) m(m + 1)2 m(1 + m/λ)2 Abel, generalized Poisson,
Borel-Tanner

8 1−Negative binomial (1 − m)(1 + 1−m
a ) m(m − 1)(ma+1

a − 1
a ) m(1 + m)(1 + a+1

a m) Takács

9 Strict arcsine m(1 + m2

a2 ) Generated by PGF
exp(a arcsin z)

10 1−Strict arcsin (1 − m)(1 + (1−m)2

a2 ) (m − 1)(a
2+1
a2 − 2m

a2 + m2

a2 ) m(1 + 2m + a2+1
a2 m2) Large arcsine

11 (1−Gamma)/λ (1 − λm)2/λ2 m(mλ − 1)2 m2

λ (1 + m
λ ) Kendall Ressel, first step scales

by λ, last step translates

12 Inverse Gaussian m3 m3/λ2 1/λ2 Normal

1.12 Variance Functions for Actuaries
GLMs allow the modeler to select a family of distributions for modeling losses based a
variance function. The variance function and unit mean then uniquely specify the loss
distribution, within exponential families. Moreover, the exponential family distribution
has minimal information of any distribution with the posited mean-variance relationship,
[13]. Thus selecting a variance function is a relatively safe way to incorporate known
properties into the modeling process. This section summarizes facts about variance
functions that are germane to their selection for actuarial modeling.

A model of a positive (or negative) quantity will have a variance function satisfying
𝑉 (0) = 0. The value of 𝜃 corresponding to zero mean occurs at an endpoint of Θ.

Any polynomial with positive coefficients satisfying 𝑉 (0) = 0 is the variance function of a
NEF. In general, if 𝑉 is a non-zero entire series (complex differentiable, infinite degree
polynomial) with nonnegative coefficients, 𝑉 (0) = 0, and positive radius of convergence,
then it is the variance function of a NEF, [7].

Jorgensen, Martinez, and Tsao, [14], show that for a NEF with variance function 𝑉 and
support 𝑆 satisfying inf 𝑆 = 0 then the following hold:

1. inf Ω = 0,
2. lim𝜇→0 𝑉 (𝜇) = 0,
3. lim𝜇→0 𝑉 (𝜇)/𝜇 = 𝛿 ∶= inf {𝑆 ∖ {0}},
4. if Pr(0) > 0 then lim𝜇→0 𝑉 ′(𝜇) = 𝛿, and
5. if Pr(0) > 0 then lim𝜇→0 𝑉 (𝜇)/𝜇2 = ∞.

They comment that l’Hospital’s rule implies lim𝜇→0 𝑉 ′(𝜇) = 𝛿 when 𝜈{0} = 0 (𝜈 is the
carrier measure) provided the limit of 𝑉 ′ exists. However, they are unable to prove the
limit exists in general in spite of the fact that it exists in all examples. Similarly, they
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expect the limit in (5) to be zero or finite when 𝜈{0} = 0. Applying l’Hospital shows
2 lim𝜇→0 𝑉 (𝜇)/𝜇2 = lim𝜇→0 𝑉 ″(𝜇).

If 𝑉 (𝑚) ∼ 𝑐0𝑚𝑝 for 𝑚 → 0 or 𝑚 → ∞ then 𝑉 is called regular of order 𝑝 at 0 or ∞.
The previous result shows that discrete distributions supported on 𝑥 ≥ 0 are regular of
order 1. A Tweedie is regular of order 1 + 𝜖 for 0 < 𝜖 < 1 and is mixed. By the above
remarks, we expect the distribution to be continuous it is regular of order ≥ 2 at zero.

We can tell the asymptotic small and large mean behavior from 𝑉. ED(𝜇, 𝜎2) (resp.
Tw𝑝(𝜇, 𝜎2)) refers to a reproductive exponential dispersion model with mean 𝜇 and
variance 𝜎2𝑉 (𝜇) (resp. Tweedie distribution with variance 𝜎2𝜇𝑝). If 𝑉 is regular of order
𝑝 then 𝑝 ∉ (0, 1), and for any 𝜇, 𝜎

𝑐−1ED(𝑐𝜇, 𝜎2𝑐2−𝑝) →𝑑 Tw𝑝(𝜇, 𝑐0𝜎2)

as either 𝜇 → 0 or 𝜇 → ∞, where convergence occurs through possible values of the
parameters. If 𝑐𝑝−2 → ∞ the model must be ID, [14]. This result says that a suitably
scaled version of a reproductive EDM behaves like a Tweedie PVF distribution for small or
large means. For example, a negative binomial has 𝑉 (𝑚) = 𝑚(1 + 𝑚). For small means
it behaves like a Poisson 𝑉 (𝑚) = 𝑚 and for large means like a gamma 𝑉 (𝑚) = 𝑚2. This
is consistent with its description as a gamma-mixed Poisson distribution. For small means
the mixing is irrelevant, the Poisson process risk dominates. For very large means, the
uncertainty across the population dominates and the process risk diversifies away, see [2],
fig. 4 and 5.

Table 1 and #tbl-esoteric display details of some common and less-common variance
functions. The references refer to [14].

Table 2: Assorted variance functions, references to [14].

Variance function 𝑉 (𝜇) Distribution Name Support Reference

1 + 𝜇2 + √1 + 𝜇2 Laplace exponential p. 68
(1 + 𝜇2)3/2 Hyperbolic distribution (−∞, ∞) p. 121

1
4 (1 + 8𝜇 −

√
1 + 8𝜇) Hermite discrete p. 123

1 + 𝜇2 − √1 + 𝜇2 𝜈(𝑑𝑦) = (𝑒2𝑦 − 1)𝑑𝑦 (0, ∞) p. 156
𝜇√𝜇2 + 4𝜇 𝜈(𝑑𝑦) =

𝛿0(𝑑𝑦) + 1(0,∞)𝑑𝑦
[0, ∞) p. 157

𝜇
√

1 + 2𝜇 𝑛𝑢 known discrete p. 157
𝜇3 + 2𝜇2 + 𝜇2√𝜇2 + 2𝜇 Lévy Stable times

exponential
(0, ∞) p. 158

𝜇 + 𝜇3/2 + (𝜇2/2)√2 + 𝜇2 Poisson-inverse Gaussian discrete p. 169
𝜇 + 𝜇√𝜇 + 2 − 2

√
1 + 𝜇 Poisson-Poisson mixture discrete p. 170
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