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1 Exponential Family Distributions

1.1 Introduction
Part I introduced an exponential family as a set of non-degenerate distributions having a
density or probability mass function that factors as

𝑓(𝑦; 𝜃) = 𝑐(𝑦)𝑘(𝜃)𝑒𝑦𝜃.

𝜃 is called the canonical parameter and 𝑐 and 𝑘 are non-negative functions. The factoriza-
tion has symmetric roles for the observation 𝑦 and parameter 𝜃, reflecting the dual meaning
of the density as the probability of an observation and the likelihood of a parameter.
Strictly speaking, this form defines a Natural Exponential Family (NEF). The exponential
family is more general, as explained in Section 1.6. See [1] for another actuary-friendly
introduction to the exponential family.

NEF Nonet refers to nine equivalent ways of defining a NEF. Each definition highlights a
different property of exponential families. They are described in the next section.

Throughout Part II, 𝑌 denotes random variable in a NEF, with density 𝑓. 𝑌 is used
rather than 𝑋 in deference to the modeling application, where 𝑦 is an observation or unit,
and 𝑥 are covariates. Dependence on a parameter 𝜃 will be denoted 𝑌𝜃 and 𝑓(⋅; 𝜃). The
support of a function or random variable is the set of points in the domain where it
takes a non-zero value. All functions are real valued and defined on a subset of the real
numbers. Integrals with no explicit limits are over the whole real line. Terminology and
notation for the components of an exponential family is not standardized, so other books
and papers may not track perfectly with our usage.
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1.2 Nine Ways of Defining a Natural Exponential Family
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Figure 1: Figure 1: Nine different ways of defining a NEF.

1.2.1 The Generating Density

A generator or carrier is a real valued function 𝑐(𝑦) ≥ 0. If 𝑐 is a probability density,
∫ 𝑐(𝑦)𝑑𝑦 = 1, then it is called a generating density. However, ∫ 𝑐(𝑦)𝑑𝑦 ≠ 1 and even
∫ 𝑐(𝑦)𝑑𝑦 = ∞ are allowed. The generating density sits at the top of the circle, reflecting
its fundamental importance.

How can we create a probability density from 𝑐? It must be normalized to have integral
1. Normalization is not possible when ∫ 𝑐(𝑦)𝑑𝑦 = ∞. However, it will be possible to
normalize the adjusted generator 𝑐(𝑦)𝑒𝜃𝑦 when its integral is finite. To that end, define

Θ = {𝜃 ∣ ∫ 𝑐(𝑦)𝑒𝜃𝑦𝑑𝑦 < ∞}.

The Natural Exponential Family generated by 𝑐 is the set of probability densities

NEF(𝑐) = { 𝑐(𝑦)𝑒𝜃𝑦

∫ 𝑐(𝑧)𝑒𝜃𝑧𝑑𝑧
∣ 𝜃 ∈ Θ}

proportional to 𝑐(𝑦)𝑒𝜃𝑦. 𝜃 is called the natural or canonical parameter and Θ the
natural parameter space. Naming the normalizing constant 𝑘(𝜃) = (∫ 𝑐(𝑦)𝑒𝜃𝑦𝑑𝑦)−1

shows all densities in NEF(𝑐) have a factorization

𝑐(𝑦)𝑘(𝜃)𝑒𝜃𝑦,

as required by the original definition of an exponential family.

There are two technical requirements for a NEF.
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First, a distribution in a NEF cannot be degenerate, i.e., it cannot take only one value.
Excluding degenerate distributions ensures that the variance of every member of a NEF
is strictly positive, which will be very important.

Second, the natural parameter space Θ must contain more than one point. If 𝑐(𝑦) =
1
𝜋

1
1 + 𝑦2 is the density of a Cauchy, then Θ = {0} because 𝑐 has a fat left and right tails.

By assumption, the Cauchy density does not generate a NEF.

The same NEF is generated by any element of NEF(𝑐), although the set Θ varies with
the generator chosen. Therefore, we can assume that 𝑐 is a probability density. When 𝑐 is
a density ∫ 𝑐 = 1, 𝑘(0) = log(1) = 0 and 0 ∈ Θ.

We will show below that Θ is an interval. If 𝑐 is supported on the non-negative reals then
(−∞, 0) ⊂ Θ. If Θ is open the the NEF if called regular. In general, Θ might contain
an endpoint.

All densities in a NEF have the same support, defined by {𝑦 ∣ 𝑐(𝑦) ≠ 0} because 𝑒𝜃𝑦 > 0
and 𝑘(𝜃) > 0 on Θ.

Many common distributions belong to a NEF, including the normal, Poisson and gamma.
The Cauchy distribution does not. The set of uniform distributions on [0, 𝑥] as 𝑥 varies is
not a NEF because the elements do not all have the same support.

1.2.2 Cumulant Generator

Instead of the generator we can work from the cumulant generator or log partition
function

𝜅(𝜃) ∶= log ∫ 𝑒𝜃𝑦𝑐(𝑦) 𝑑𝑦,

which is defined for 𝜃 ∈ Θ. The cumulant generator is the log Laplace transform of 𝑐 at
−𝜃, and so there is a one-to-one mapping between generators and cumulant generators.
The cumulant generator sits in the center of the circle because it is directly linked to
several other components. In terms of 𝜅, a member of NEF(𝑐) has density

𝑐(𝑦)𝑒𝜃𝑦−𝜅(𝜃).

The cumulant generator is a convex function, and strictly convex if 𝑐 is not degenerate.
Convexity follows from Hölder’s inequality. Let 𝜃 = 𝑠𝜃1 + (1 − 𝑠)𝜃2. Then

∫ 𝑒𝜃𝑦𝑐(𝑦)𝑑𝑦 = ∫(𝑒𝜃1𝑦)𝑠(𝑒𝜃2𝑦)1−𝑠𝑐(𝑦)𝑑𝑦

≤ (∫ 𝑒𝜃1𝑦𝑐(𝑦)𝑑𝑦)
𝑠

(∫ 𝑒𝜃2𝑦𝑐(𝑦)𝑑𝑦)
1−𝑠

.

Now take logs. As a result Θ is an interval. Hölder’s inequality is an equality iff 𝑒𝜃1𝑦

is proportional to 𝑒𝜃2𝑦, which implies 𝜃1 = 𝜃2. Thus provided Θ is not degenerate 𝜅 is
strictly convex.
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1.2.3 Exponential Tilting

The exponential tilt of 𝑌 with parameter 𝜃 is a random variable with density

𝑓(𝑦; 𝜃) = 𝑐(𝑦)𝑒𝜃𝑦−𝜅(𝜃).

It is denoted 𝑌𝜃. The exponential tilt is defined for all 𝜃 ∈ Θ. Tilting, as its name implies,
alters the mean and tail thickness of 𝑐. For example, when 𝜃 < 0 multiplying 𝑐(𝑦) by
𝑒𝜃𝑦, decreases the probability of positive outcomes, increases that of negative ones, and
therefore lowers the mean.

A NEF consists of all valid exponential tilts of a generator density 𝑐, and all distributions
in a NEF family are exponential tilts of one another. They are parameterized by 𝜃. We
have seen they all have the same support, since 𝑒−𝜅(𝜃) > 0 for 𝜃 ∈ Θ. Therefore they are
equivalent measures. In finance, equivalent measures are used to model different views of
probabilities and to determine no-arbitrage prices.

An exponential tilt is also known as an Esscher transform.

Exercise: show that all Poisson distributions are exponential tilts of one another as are
all normal distributions with standard deviation 1. The tilt directly adjusts the mean.
The cumulant generator of a standard normal is 𝜃2/2 and for a Poisson(𝜆) it is 𝜆(𝑒𝜃 − 1).
�

1.2.4 Cumulant Generating Functions

The moment generating function (MGF) of a random variable 𝑌 is1

𝑀(𝑡) = E[𝑒𝑡𝑌] = ∫ 𝑒𝑡𝑦𝑓(𝑦) 𝑑𝑦.

The MGF contains the same information about 𝑌 as the distribution function, it is just
an alternative representation. Think of distributions and MGFs as the random variable
analog of Cartesian and polar coordinates for points in the plane.

The moment generating function owes its name to the fact that

E[𝑌 𝑛] = 𝑑𝑛

𝑑𝑡𝑛 𝑀𝑌(𝑡)∣
𝑡=0

,

provided E[𝑌 𝑛] exists. That is, the derivatives of 𝑀 evaluated at 𝑡 = 0 give the non-central
moments of 𝑌. The moment relationship follows by differentiating E[𝑒𝑡𝑌] = ∑ E[(𝑡𝑌 )𝑛/𝑛!]
through the expectation integral.

The MGF of a sum of independent variables is the product of their MGFs

𝑀𝑋+𝑌(𝑡) = E[𝑒𝑡(𝑋+𝑌 )]
= E[𝑒𝑡𝑋𝑒𝑡𝑌]
= E[𝑒𝑡𝑋]E[𝑒𝑡𝑌]
= 𝑀𝑋(𝑡)𝑀𝑌(𝑡).

1Strictly, we should use the characteristic function, defined by 𝜙(𝑠) = E[𝑒𝑖𝑠𝑌] where 𝑖 =
√

−1.
The characteristic function exists for all 𝑌 and all real 𝑠 because |𝑒𝑖𝑠𝑦| = 1, whereas for certain thick
tailed 𝑌 the MGF does not always exist. However, imaginary numbers can be intimidating and often we
can get by with the MGF. The cognoscenti should replace MGF with CF and sprinkle with 𝑖.
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Independence is used to equate the expectation of the product and the product of the
expectations. Similarly, the MGF of a sum 𝑋1 + ⋯ + 𝑋𝑛 of iid variables is 𝑀𝑋(𝑡)𝑛.

The cumulant generating function is the log of the MGF, 𝐾(𝑡) = log 𝑀(𝑡). The 𝑛th
cumulant is defined as

𝑑𝑛

𝑑𝑡𝑛 𝐾(𝑡)∣
𝑡=0

.

Cumulants are additive for independent variables because 𝐾𝑋+𝑌 = log 𝑀𝑋+𝑌 =
log(𝑀𝑋𝑀𝑌) = log(𝑀𝑋) + log(𝑀𝑌) = 𝐾𝑋 + 𝐾𝑌. Higher cumulants are translation
invariant because 𝐾𝑘+𝑋(𝑡) = 𝑘𝑡 + 𝐾𝑋(𝑡). The first three cumulants are the mean, the
variance and the third central moment, but thereafter they differ from both central and
non-central moments.

Exercise: show that all cumulants of a Poisson distribution equal its mean. �

The MGF of the exponential tilt 𝑌𝜃 in NEF(𝑐) is

𝑀(𝑡; 𝜃) = E[𝑒𝑡𝑌𝜃 ]

= ∫ 𝑒𝑡𝑦 𝑐(𝑦)𝑒𝜃𝑦−𝜅(𝜃) 𝑑𝑦

= 𝑒𝜅(𝜃+𝑡)−𝜅(𝜃).

Therefore the cumulant generating function of 𝑌𝜃 is simply

𝐾(𝑡; 𝜃) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃).

1.2.5 The Mean Value Mapping

The mean of 𝑌𝜃 is the first cumulant, computed by differentiating 𝐾(𝑡; 𝜃) with respect to
𝑡 and setting 𝑡 = 0. The second cumulant, the variance, is the second derivative. Thus

{
E[𝑌𝜃] = 𝐾′(0; 𝜃) = 𝜅′(𝜃) and
Var(𝑌𝜃) = 𝜅″(𝜃).

The mean value mapping (MVM) function is 𝜏(𝜃) = 𝜅′(𝜃). Since a NEF distribution is
non-degenerate, 𝜏 ′(𝜃) = 𝜅″(𝜃) = Var(𝑌𝜃) > 0 showing again that 𝜅 is convex and that 𝜏
is monotonically increasing and therefore invertible. Thus 𝜃 = 𝜏−1(𝜇) is well defined. The
function 𝜏−1 is called the canonical link in a GLM. The link function, usually denoted
𝑔, bridges from the mean domain to the linear modeling domain.

The mean domain is Ω ∶= 𝜏(int Θ), the set of possible means. It is another interval. The
NEF is called regular if Θ is open, and then the mean parameterization will return the
whole family. But if Θ contains an endpoint the mean domain may need to be extended
to include ±∞. The family is called steep if the mean domain equals the interior of the
convex hull of the support. Regular implies steep. A NEF is steep iff E[𝑋𝜃] = ∞ for all
𝜃 ∈ Θ ∖ int Θ.

When we model, the mean is the focus of attention. Using 𝜏 we can parameterize NEF(𝑐)
by the mean, rather than 𝜃, which is usually more convenient.

5



1.2.6 The Variance Function

The variance function determines the relationship between the mean and variance of
distributions in a NEF. It sits at the bottom of the circle, befitting its foundational role.
In many cases the modeler will have prior knowledge of the form of the variance function.
Part I explains how NEFs allow knowledge about 𝑉 to be incorporated without adding
any other assumptions.

Using the MVM we can express the variance of 𝑌𝜃 in terms of its mean. Define the
variance function by

𝑉 (𝜇) = Var(𝑌𝜏−1(𝜇))
= 𝜏 ′(𝜏−1(𝜇))

= 1
(𝜏−1)′(𝜇)

.

The last expression follows from differentiating 𝜏(𝜏−1(𝜇)) = 𝜇 with respect to 𝜇 using the
chain rule. Integrating, we can recover 𝜃 from 𝑉

𝜃 = 𝜃(𝜇)
= 𝜏−1(𝜇)

= ∫
𝜇

𝜇0

(𝜏−1)′(𝑚)𝑑𝑚

= ∫
𝜇

𝜇0

𝑑𝑚
𝑉 (𝑚)

.

We can phrase this relationship as

𝜕𝜃
𝜕𝜇

= 1
𝑉 (𝜇)

meaning 𝜃 is a primitive or anti-derivative of 1/𝑉 (𝜇). Similarly,

𝜕𝜅
𝜕𝜇

= 𝜅′(𝜃(𝜇))
𝑉 (𝜇)

= 𝜇
𝑉 (𝜇)

,

meaning 𝜅(𝜃(𝜇)) is a primitive of 𝜇/𝑉 (𝜇).

𝑉 and Θ uniquely characterize a NEF. It is necessary to specify Θ, for example, to
distinguish a gamma family from its negative. (𝑉 , Θ) do not characterize a family within
all distributions. For example, the family 𝑘𝑋 for 𝑋 with E[𝑋] = Var(𝑋) = 1 has variance
proportional to the square of the mean, for any 𝑋. But the gamma is the only NEF family
of distributions with square variance function.

1.2.7 Log Likelihood for the Mean

The NEF density factorization implies the sample mean is a sufficient statistic for 𝜃. The
log likelihood for 𝜃 is 𝑙(𝑦; 𝜃) = log(𝑐(𝑦)) + 𝑦𝜃 − 𝜅(𝜃). Only the terms of the log likelihood
involving 𝜃 are relevant for inference about the mean. The portion 𝑦𝜃 − 𝜅(𝜃) is often
called the quasi-likelihood.

Differentiating 𝑙 respect to 𝜃 and setting equal to zero shows the maximum likelihood
estimator (MLE) of 𝜃 given 𝑦 solves the score equation 𝑦 − 𝜅′(𝜃) = 0. Given a sample of
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independent observations 𝑦1, … , 𝑦𝑛, the MLE solves ̄𝑦 − 𝜅(𝜃) = 0, where ̄𝑦 is the sample
mean.

Using the mean parameterization

𝑓(𝑦; 𝜇) = 𝑐(𝑦)𝑒𝑦𝜏−1(𝜇)−𝜅(𝜏−1(𝜇))

the log likelihood of 𝜇 is

𝑙(𝑦; 𝜇) = log(𝑐(𝑦)) + 𝑦𝜏−1(𝜇) − 𝜅(𝜏−1(𝜇)).

Differentiating with respect to 𝜇, shows the maximum likelihood value occurs when

𝜕𝑙
𝜕𝜇

= 𝜕𝑙
𝜕𝜃

𝜕𝜃
𝜕𝜇

= {𝑦 − 𝜅′(𝜏−1(𝜇))} 1
𝑉 (𝜇)

= 𝑦 − 𝜇
𝑉 (𝜇)

= 0

since 𝜅′(𝜏−1(𝜇)) = 𝜏(𝜏−1(𝜇)) = 𝜇. Thus the most likely tilt given 𝑦 has parameter 𝜃
determined so that E[𝑌𝜃] = 𝑦. Recall, 𝜕𝑙/𝜕𝜇 is called the score function.

In a NEF, the maximum likelihood estimator of the canonical parameter is unbiased.
Given a sample from a uniform [0, 𝑥] distribution, the maximum likelihood estimator for
𝑥 is the maximum of a sample, but it is biased low. The uniform family is not a NEF.

1.2.8 Unit Deviance

A statistical unit is an observation and a deviance is a measure of fit that generalizes the
squared difference. A unit deviance is a measure of fit for a single observation.

Given an observation 𝑦 and an estimate (fitted value) 𝜇, a unit deviance measures of
how much we care about the absolute size of the residual 𝑦 − 𝜇. Deviance is a function
𝑑(𝑦; 𝜇) with the similar properties to (𝑦 − 𝜇)2:

1. 𝑑(𝑦; 𝑦) = 0 and
2. 𝑑(𝑦; 𝜇) > 0 if 𝑦 ≠ 𝜇.

If 𝑑 is twice continuously differentiable in both arguments it is called a regular deviance.
𝑑(𝑦; 𝜇) = |𝑦 − 𝜇| is an example of a deviance that is not regular.

We can make a unit deviance from a likelihood function by defining

𝑑(𝑦; 𝜇) = 2(sup
𝜇∈Ω

𝑙(𝑦; 𝜇) − 𝑙(𝑦; 𝜇))

= 2(𝑙(𝑦; 𝑦) − 𝑙(𝑦; 𝜇)),

provided 𝑦 ∈ Ω. This is where we want steepness. It is also where we run into problems
with Poisson modeling. 𝑦 = 0 is a legitimate outcome but not a legitimate mean value.
For a steep family we know the only such values occur on the boundary of the support,
generally at 0. The factor 2 is included to match squared differences. 𝑙(𝑦; 𝑦) is the
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likelihood of a saturated model, with one parameter for each observation; it is the best a
distribution within the NEF can achieve. 𝑑 is a relative measure of likelihood, compared
to the best achievable. It obviously satisfies the first condition to be a deviance. It satisfies
the second because 𝜏 is strictly monotone (again, using the fact NEF distributions are
non-degenerate and have positive variance). Finally, the nuisance term log(𝑐(𝑦)) in 𝑙
disappears in 𝑑 because it is independent of 𝜃.

We can construct 𝑑 directly from the variance function. Since

𝜕𝑑
𝜕𝜇

= −2 𝜕𝑙
𝜕𝜇

= −2𝑦 − 𝜇
𝑉 (𝜇)

it follows that
𝑑(𝑦; 𝜇) = 2 ∫

𝑦

𝜇

𝑦 − 𝑡
𝑉 (𝑡)

𝑑𝑡.

The limits ensure 𝑑(𝑦; 𝑦) = 0 and that 𝑑 has the desired partial derivative wrt 𝜇. The
deviance is the average of how much we care about the difference between 𝑦 and the fitted
value, between 𝑦 and 𝜇. The variance function in the denominator allows the degree of
care to vary with the fitted value.

Example. When 𝑑(𝑦; 𝜇) = (𝑦 − 𝜇)2, 𝜕𝑑/𝜕𝜇 = −2(𝑦 − 𝜇) and hence 𝑉 (𝜇) = 1. �

We can make a deviance function from a single-variable function 𝑑∗ via 𝑑(𝑦; 𝜇) = 𝑑∗(𝑦−𝜇)
provided 𝑑∗(0) = 0 and 𝑑∗(𝑥) ≠ 0 for 𝑥 ≠ 0. 𝑑∗(𝑥) = 𝑥2 shows square distance has this
form. We can then distinguish scale vs. dispersion or shape via

𝑑 (𝑦 − 𝜇
𝜎

) vs. 𝑑(𝑦 − 𝜇)
𝜎2 .

Scale and shape are the same in a normal-square error model. Part III shows they are
different for other distributions such as the gamma or inverse Gaussian. Densities with
different shape cannot be shifted and scaled to one-another.

1.2.9 Density From Deviance

Finally, we can write a NEF density in terms of the deviance rather than as an exponential
tilt. This view further draws out connections with the normal. Starting with the tilt
density, and parameterizing by the mean, we get

𝑓(𝑦; 𝜏−1(𝜇)) = 𝑐(𝑦)𝑒𝑦𝜏−1(𝜇)−𝜅(𝜏−1(𝜇))

= 𝑒𝑙(𝑦;𝜇)

= 𝑒−𝑑(𝑦;𝜇)/2+𝑙(𝑦;𝑦)

= 𝑐∗(𝑦)𝑒−𝑑(𝑦;𝜇)/2

where 𝑐∗(𝑦) ∶= 𝑒𝑙(𝑦;𝑦) = 𝑐(𝑦)𝑒𝑦𝜏−1(𝑦)−𝜅(𝜏−1(𝑦)).

Although it is easy to compute the deviance from 𝑉, it is not necessarily easy to compute
𝑐∗. It can be hard (or impossible) to identify a closed form expression for the density of
a NEF member in terms of elementary functions. This will be the case for the Tweedie
distribution.
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κ(θ) =

∫ µ

µ0

mdm

V (m)

Cumulant generator
κ(θ) = log

∫
eθyc(y)dy,

θ canonical parameter
Θ = {θ | κ(θ) < ∞}
NEF regular if Θ open

Generating density
ν(dy) = c(y)dy,

not necessarily finite

Exponential tilt, Xθ

density f(y; θ) = c(y)eθy−κ(θ)

support S, C = conv(S)

Cumulant generating function
Kθ(t) = κ(t + θ) − κ(θ)

Mean value mapping
E[Xθ] = κ′(θ) = τ(θ) = µ
mean domain Ω = τ(Θ̊)
NEF steep if Ω = C̊

Variance function
Var(Xθ) = V (µ) = κ′′(θ) =
τ ′(τ−1(µ) = 1/(τ−1)′(µ)

Log likelihood for µ
l(y;µ) = yτ−1(µ) − κ(τ−1(µ))

∂l

∂µ
=

y − µ

V (µ)

Unit deviance, for y ∈ Ω
d(y;µ) = 2(l(y; y) − l(y;µ))

= 2

∫ y

µ

y − t

V (t)
dt ≥ 0

Density from deviance
f(y;µ) = c∗(y)e−d(y;µ)/2

c∗(y) = c(y)el(y;y)

τ−1(µ) =

∫ µ

µ0

dm

V (m)

Figure 2: Relationships between actors for a NEF defined by the generating density 𝑐.
If the NEF is steep (e.g., if it is regular) then the condition 𝑦 ∈ Ω in the unit deviance
can be dropped. If the NEF is not steep then the 𝑙(𝑦; 𝑦) may not be defined and must
be replaced with sup𝜃∈Θ 𝑦𝜃 − 𝜅(𝜃) in the unit deviance. conv(𝑆) denotes the smallest
convex set (i.e., interval) containing 𝑆. For the Poisson 𝑆 = {0, 1, 2, … } and 𝐶 = [0, ∞).
Θ̊ denotes the interior of Θ.
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1.3 The NEF Circle
We have defined enough terms to make your head spin. Let’s use the formulas summarized
in Figure 2 to work out the details for four examples: the standard normal, a Poisson,
an exponential (gamma), and an inverse Gaussian. The results are shown in the four
diagrams below, Figure 3 to Figure 6.

The normal distribution is the archetype, corresponding to squared distance deviance and
the constant variance function. Scale and shape coincide. The Poisson, like the normal,
has no shape parameter. But because it is defined on the non-negative integers, scaling
changes the support and creates in the over-dispersed Poisson model. For the gamma and
inverse Gaussian, scale and shape are different operations.

1.3.1 NEFs associated with the standard normal, Poisson, exponential
(gamma), and standard inverse Gaussian distributions.

κ(θ) =
θ2

2

c(y) =
1√
2π

e−y2/2

f(y; θ) = c(y)eθy−θ2/2

Kθ(t) = θt +
t2

2

κ′(θ) = θ = µ

V (µ) = 1

l(y;µ) = µy − µ2

2

d(y;µ) = (y − µ)2

f(y;µ) =
1√
2π

e−(x−µ)2/2

Figure 3: The normal NEF, with 𝜎2 = 1.

1.4 Completing the NEF Circle
This section presents an algorithm to compute each element of the NEF Circle from a
variance function, as well as a less formulaic approach starting with the generator density.
The formal approach is described in [2] and [3].

1.4.1 Starting From the Variance Function.

The variance function 𝑉 for a NEF variable 𝑌 satisfies

Var(𝑌 ) = 𝑉 (E[𝑌 ]).
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κ(θ) = eθ

c(n) =
1

n!
, n = 0, 1, . . .

f(y; θ) =
eθy−eθ

y!

Kθ(t) = eθ(et − 1)

κ′(θ) = eθ,
θ = log(µ)

V (µ) = µ

l(y;µ) = y log(µ) − µ

d(y;µ) =

2

(
y log

(
y

µ

)
− (y − µ)

)

f(n;µ) =
e−µµn

n!

Figure 4: The Poisson NEF. Counting base measure, 𝜅(𝜃) = log ∑𝑛 𝑒𝜃𝑛/𝑛!.

κ(θ) = − log(−θ)
θ < 0

c(y) = 1

f(y; θ) = (−θ)eθy

Kθ(t) = − log

(
1 +

t

θ

)

κ′(θ) = −1

θ
, θ = − 1

µ

V (µ) = µ2

l(y;µ) = − y

µ
− log(µ)

d(y;µ) = 2

(
y

µ
− log

(
y

µ

)
− 1

)

f(y;µ) = µe−y/µ

Figure 5: The Gamma NEF with shape parameter 1. 𝜏−1(𝜇) = −𝜇−1 and 𝑉 (𝜇) =
1/(𝜏−1)′(𝜇) = 𝜇2. Note 𝜃 > 0 for 𝑦 < 0 is another solution.
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κ(θ) = −
√
−2θ

θ < 0

c(y) =
e−1/(2y)√

2πy3

f(y; θ) = c(y)eθy+(−2θ)1/2

Kθ(t) =

√
−2θ

(
1−

√
1 +

t

θ

)

κ′(θ) = − 1√
−2θ

,

θ = − 1

2µ2

V (µ) = µ3

l(y;µ) = − y

2µ2
+

1

µ

d(y;µ) =
(y − µ)2

µ2y

f(y;µ) =
1√
2πy3

e−(y−µ)/(2µ2y)

Figure 6: The inverse Gaussian NEF with shape parameter 1. 𝜏−1(𝜇) = −1/(2𝜇2) and
𝑉 (𝜇) = 1/(𝜏−1)′(𝜇) = 𝜇3. Compute 𝑑 by integrating (𝑦 − 𝑡)/𝑉 (𝑡).

Name V (µ) d(y;µ), σ2 = λ = 1 c(y;λ), λ = 1/σ2 κ(θ) τ(θ) Θ Ω S

Gaussian(µ, σ2) 1 (y − µ)2 1√
2πσ

exp(−y2/2σ2) 1
2θ

2 θ R R R

Poisson µ 2 (y log(y/µ)− (y − µ)) δkλ
k/k! eθ eθ R R>0 {0, 1, 2, . . .}

Tweedie(µ, p) µp 2
(

max(y,0)2−p

(1−p)(2−p) − yµ1−p

1−p + µ2−p

2−p

) α− 1

α

(
θ

α− 1

)α

R<0 R>0 R≥0

Gamma(µ, σ2) µ2/λ 2
(
log y

µ + y
µ − 1

)
λλyλ−1/Γ(λ) − log(−θ) −1/θ R<0 R>0 R>0

Positive extreme stable µp, p > 2 as Tweedie R≤0 R>0 R>0

Inverse Gaussian µ3/p3
(y − µ)2

µ2y
1√
2πy3

e−1/2x R≤0 R>0 R>0

Extreme stable µp, p < 0 as Tweedie R≥0 R>0 R

Extreme Cauchy, β eµ 2β−2
(
e−βy + e−βµ(βy − βµ− 1)

)
θ(1 + log θ) R<0 R R

Binomial(n, p), n known µ(1 − µ
n ) 2

(
y log y

µ + (1− y) log 1−y
1−µ

)
λkδk log(1 + eθ) eθ/(1 + eθ) R (0, 1) {0, 1, 2, . . .}

Negative binomial(n, λ), nn
known

µ(1 + µ
p ) 2

(
y log y

µ + (1 + y) log 1+µ
1+y

)
p+ k − 1kδk − log(1 − eθ) eθ/(1 − eθ) R<0 R>0 {0, 1, 2, . . .}

Generalized hyperbolic secant p(1 + µ2

p2 ) 2y(atan(y) − atan(µ)) + log
(

1+µ2

1+y2

) λ|Γ(λ(1 + iy)/2)|2

πΓ(λ)22−λ
− log(cos θ) tan θ (−π/2, π/2) R R

Abel, generalized Poisson µ(1 + µ
p )

2 p(p + k)k−1 δk
k! R>0 {0, 1, 2, . . .}

Taskacs, a > 0 µ(1 + µ
p )(1 + a+1

a
µ
p ) ap

∏k−1
j=1 (a(p+ k) + j) δk

k! R>0 {0, 1, 2, . . .}

Strict arcsine µ(1 + µ2

p2 )
pn(a)
n! R>0 {0, 1, 2, . . .}

Large arcsine, a > 0 µ(1 + 2µ
p + 1+a2

a2
µ2

p2 )
p

p+kpk(a(p + k)) δkk! R>0 {0, 1, 2, . . .}

Ressel µ2

p (1 + µ
p )

pxx+p−1e−1

Γ(x+ p+ 1)
R>0 R>0

Figure 7: Various natural exponential family distributions. In the strict and large arcsine
distributions, 𝑝𝑛(𝑎) are defined as the coefficients in exp(𝑎 arcsin(𝑧)) = ∑𝑛

𝑝𝑛(𝑎)
𝑛! 𝑧𝑛. For

the Abel family on down 𝜅 is defined implicitly.
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It is independent of the parameterization used for 𝑌 because it only expresses how the
variance behaves as a function of the mean. The mean is denoted 𝜇. There is a one-to-
one relationship between values of the canonical parameter 𝜃 and values of 𝜇 given by
𝜏(𝜃) ∶= 𝜅′(𝜃) = 𝜇. Thus we can consider the family parameterized by 𝜃 or 𝜇. To complete
the NEF Circle starting from 𝑉:

1. Integrate (𝜏−1)′(𝜇) = 1/𝑉 (𝜇) to determine the canonical parameter 𝜃 = 𝜏−1(𝜇) as
a primitive of 1/𝑉 (𝜇)

𝜃(𝜇) = 𝜏−1(𝜇)

= ∫(𝜏−1)′(𝜇) 𝑑𝜇

= ∫ 𝑑𝜇
𝑉 (𝜇)

.

2. Rearrange to obtain 𝜇 = 𝜅′(𝜃) as a function of 𝜃.
3. Integrate 𝜅′(𝜃) to determine the cumulant generator 𝜅(𝜃). Change variables 𝜇 =

𝜅′(𝜃), 𝑑𝜇 = 𝜅″(𝜃)𝑑𝜃, to see 𝜅(𝜃) is a primitive of 𝜇/𝑉 (𝜇):

𝜅(𝜃) = ∫ 𝜅′(𝜃) 𝑑𝜃 = ∫ 𝜇
𝑉 (𝜇)

𝑑𝜇.

4. The cumulant generating function is 𝐾𝜃(𝑡) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃).
5. The deviance can be computed directly as

𝑑(𝑦; 𝜇) = 2 ∫
𝑦

𝜇

𝑦 − 𝑚
𝑉 (𝑚)

𝑑𝑚 = 𝑙(𝑦; 𝑦) − 𝑙(𝑦; 𝜇).

Notice that equally

𝑑(𝑦; 𝜇) = 2{𝑦𝜃(𝑦) − 𝜅(𝜃(𝑦)) − (𝑦𝜃(𝜇) − 𝜅(𝜃(𝜇)))}

using the results of Steps 1 and 3. As a result, 𝑙(𝑦; 𝜇) = 𝑦𝜃(𝜇) − 𝜅(𝜃(𝜇)) up to
irrelevant factors.

This algorithm can always be computed numerically. It can run into problems if the
functions in Steps 1 and 3 are not integrable, or in Step 2 if 𝜃 cannot be inverted.

1.4.2 Starting from the Density.

A. Starting with the density or probability mass function, find the factorization

𝑐(𝑦)𝑒𝜃𝑦−𝜅(𝜃).

in terms of the original parameterization.
B. Identify 𝜃 as a function of the original parameters.

Working from the density is less algorithmic, but is easier if the form of the density is
known. Note that you can then confirm 𝑉 (𝜇) = 𝜅″(𝜏−1(𝜇)).

We now present several examples of these techniques.
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1.4.3 The Binomial Distribution

Let 𝑌 ∼ binomial(𝑛, 𝑝), with integer 𝑛 > 0 known and 0 < 𝑝 < 1 unknown. E[𝑌 ] = 𝜇 =
𝑛𝑝 and Var(𝑌 ) = 𝑛𝑝𝑞 = 𝜇(1 − 𝑝) = 𝜇(1 − 𝜇/𝑛) so the variance function is

𝑉 (𝜇) = 𝜇 (1 − 𝜇
𝑛

) .

Binomial: Starting From the Variance Function.

1. Integrate 1/𝑉 (using the partial fraction decomposition) to determine 𝜃

𝜃 = ∫ 𝑑𝜇
𝑉 (𝜇)

= ∫ 𝑛
𝜇(𝑛 − 𝜇)

𝑑𝜇

= ∫ ( 1
𝜇

+ 1
𝑛 − 𝜇

) 𝑑𝜇

= log ( 𝜇
𝑛 − 𝜇

)

= log ( 𝑝
1 − 𝑝

) .

Rearranging gives 𝑝 = 𝑒𝜃/(1 + 𝑒𝜃). This step has identified the canonical parameter.
2. Invert 𝜃 = log(𝜇/(𝑛 − 𝜇)) to obtain 𝜇 = 𝜏(𝜃) = 𝑛𝑒𝜃/(1 + 𝑒𝜃) = 𝑛𝑝.
3. Integrate 𝜏(𝜃) to determine the cumulant generator

𝜅(𝜃) = ∫ 𝜏(𝜃) 𝑑𝜃

= ∫ 𝑛𝑒𝜃

1 + 𝑒𝜃 𝑑𝜃

= 𝑛 log(1 + 𝑒𝜃).

Alternatively, substituting,

𝜅(𝜃) = ∫
𝜇

𝜇0

𝜇
𝑉 (𝜇)

𝑑𝜇

where 𝜏(𝜃) = 𝜇. If 𝑝 = 0 then 𝜇 = 0 and the distribution is degenerate with 𝜅 = 0.
Therefore, the cumulant generator is given by

𝜅(𝜃) = ∫
𝜇

0

𝑚
𝑉 (𝑚)

𝑑𝑚

= ∫
𝜇

0

𝑛
𝑛 − 𝑚

𝑑𝑚

= −𝑛 log (1 − 𝜇
𝑛

)

= 𝑛 log (1 + 𝑒𝜃)
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4. The cumulant generating function is

𝐾𝜃(𝑡) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃)

= 𝑛 log (1 + 𝑒𝜃+𝑡

1 + 𝑒𝜃 )

= 𝑛 log ((1 − 𝑝) + 𝑝𝑒𝑡) .

Exponentiating yields (1 − 𝑝 + 𝑝𝑒𝑡)𝑛, the MGF of the binomial.
5. The deviance is

𝑑(𝑦; 𝜇) = 2 ∫
𝑦

𝜇

𝑦 − 𝑚
𝑉 (𝑚)

𝑑𝑚

= 2 {𝑦 log ( 𝑦
𝜇

) + (1 − 𝑦) log ( 1 − 𝑦
1 − 𝜇

)}

and hence 𝑙(𝑦; 𝜇) = 𝑦 log(𝜇) + (1 − 𝑦) log(1 − 𝜇).

Binomial: Starting from the Density.

A. Write the probability mass function as

𝑃(𝑁 = 𝑦) = (𝑛
𝑦
)𝑝𝑦(1 − 𝑝)𝑛−𝑦

= (𝑛
𝑦
) exp {𝑦 log ( 𝑝

1 − 𝑝
) − 𝑛(− log(1 − 𝑝))}

B. Identify 𝑐(𝑦) = (𝑛
𝑦), 𝜃 = log ( 𝑝

1−𝑝), which confirms 𝜅(𝜃) = 𝑛 log(1 + 𝑒𝜃).

1.4.4 The Negative Binomial Distribution

Let 𝑌 ∼ negative binomial(𝑛, 𝑝), with 𝑛 known and 𝑝 unknown. E[𝑌 ] = 𝜇 = 𝑛𝑝/(1 − 𝑝)
and Var(𝑌 ) = 𝑛𝑝/(1 − 𝑝)2. Since 𝑝

(1−𝑝)2 = 𝑝
1−𝑝(1 + 𝑝

1−𝑝), we can write

Var(𝑌 ) = 𝑛𝑝
(1 − 𝑝)2

= 𝑛 ( 𝑝
1 − 𝑝

(1 + 𝑝
1 − 𝑝

))

= 𝑛𝑝
1 − 𝑝

(1 + 1
𝑛

𝑛𝑝
1 − 𝑝

)

= 𝜇 (1 + 𝜇
𝑛

) ,

so variance function is
𝑉 (𝜇) = 𝜇 (1 + 𝜇

𝑛
) .

Negative Binomial: Starting From the Variance Function.
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1. Integrate 1/𝑉 (again, using partial fractions) to determine 𝜃

𝜃 = ∫ 𝑑𝜇
𝑉 (𝜇)

= ∫ 𝑛
𝜇(𝑛 + 𝜇)

𝑑𝜇

= ∫ 1
𝜇

− 1
𝑛 + 𝜇

𝑑𝜇

= log ( 𝜇
𝑛 + 𝜇

)

= log(𝑝).

Hence 𝑝 = 𝑒𝜃. This step has identified the canonical parameter.

2. Invert 𝜃 = log(𝜇/(𝑛 + 𝜇)) to obtain 𝜇 = 𝜏(𝜃) = 𝑛𝑒𝜃

1 − 𝑒𝜃 .
3. Integrate 𝜏(𝜃) to determine the cumulant generator

𝜅(𝜃) = ∫ 𝜏(𝜃) 𝑑𝜃

= ∫ 𝑛𝑒𝜃

1 − 𝑒𝜃 𝑑𝜃

= −𝑛 log(1 − 𝑒𝜃).
4. The cumulant generating function is

𝐾𝜃(𝑡) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃)

= −𝑛 log (1 + 𝑒𝜃+𝑡

1 + 𝑒𝜃 )

= 𝑛 log ( 1 − 𝑝
1 − 𝑝𝑒𝑡 ) .

Exponentiating yields the MGF of the negative binomial.
5. The deviance, using the second expression for 𝜃 from part 2 and the cumulant

𝜅(𝜃(𝜇)) = 𝑛 log(𝑛/(𝑛 + 𝜇)) from part 3, is

𝑑(𝑦; 𝜇) = 2 {𝑦 log ( 𝑦
𝑛 + 𝑦

) − 𝑛 log (𝑛 + 𝑦
𝑛

) − 𝑦 log ( 𝜇
𝑛 + 𝜇

) + 𝑛 log (𝑛 + 𝜇
𝑛

)}

= 2 {𝑦 log ( 𝑦
𝜇

) − (𝑛 + 𝑦) log ( 𝑛 + 𝑦
𝑛 + 𝜇

)}

and
𝑙(𝑦; 𝜇) = 𝑦 log ( 𝜇

𝑛 + 𝜇
) + 𝑛 log ( 𝑛

𝑛 + 𝜇
)

up to irrelevant factors.

Negative Binomial: Starting from the Density.

A. Factorizing the probability mass function as

𝑃(𝑁 = 𝑘) = (𝑛 + 𝑘 − 1
𝑘

)𝑝𝑘(1 − 𝑝)𝑛

= (𝑛 + 𝑘 − 1
𝑘

) exp {𝑘 log(𝑝) − 𝑛(− log(1 − 𝑝))}
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shows 𝑐(𝑘) = (𝑛+𝑘−1
𝑘 ), 𝜃 = log(𝑝) < 0 and 𝜅(𝜃) = −𝑛 log(1 − 𝑒𝜃).

1.4.5 The Gamma Distribution

Let 𝑌 ∼ gamma(𝜇, 𝛼), with known shape parameter 𝛼. E[𝑌 ] = 𝜇 and Var(𝑌 ) = 𝜇2/𝛼, so
𝛼 is 1/𝐶𝑉 2. The variance function is simply 𝑉 (𝜇) = 𝜇2/𝛼.

The shape and rate parameters are 𝛼 and 𝛽 = 𝛼/𝜇. The density is
𝛽𝛼

Γ(𝛼)
𝑦𝛼−1𝑒−𝛽𝑦 = 𝛼𝛼

𝜇𝛼Γ(𝛼)
𝑦𝛼−1𝑒−𝑦𝛼/𝜇

Gamma: Starting From the Variance Function.

1. Integrate 1/𝑉 to determine 𝜃

𝜃 = ∫ 𝑑𝜇
𝑉 (𝜇)

= ∫ 𝛼
𝜇2 𝑑𝜇 = −𝛼

𝜇
.

2. Invert, to obtain 𝜇 = 𝜏(𝜃) = −𝛼
𝜃

.
3. Integrate 𝜏(𝜃) to determine the cumulant generator

𝜅(𝜃) = ∫ 𝜏(𝜃) 𝑑𝜃

= ∫ −𝛼
𝜃

𝑑𝜃

= −𝛼 log(−𝜃).
Beware: if 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥 then ∫ 𝑓(−𝑥)𝑑𝑥 = − ∫ 𝑓(𝑦)𝑑𝑦 = −𝐹(𝑦) = −𝐹(−𝑥),
substituting 𝑦 = −𝑥.

4. The cumulant generating function is
𝐾𝜃(𝑡) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃)

= −𝛼 {log(−𝜃 − 𝑡) + log(−𝜃)}

= −𝛼 log (1 + 𝑡
𝜃

) .

Exponentiating yields the MGF of the gamma; note 𝜃 < 0.
5. The deviance is

𝑑(𝑦; 𝜇) = 𝛼 {𝑦 − 𝜇
𝜇

− log 𝑦
𝜇

}

and 𝑙(𝑦; 𝜇) = −𝑦/𝜇 − log 𝜇 up to irrelevant factors.

Gamma: Starting from the Density.

A. Factorizing the probability mass function as
𝑦𝛼−1

Γ(𝛼)
(𝛼

𝜇
)

𝛼
𝑒−𝑦𝛼/𝜇 = 𝑦𝛼−1

Γ(𝛼)
exp (−𝑦𝛼

𝜇
+ 𝛼 log 𝛼

𝜇
)

= 𝑦𝛼−1

Γ(𝛼)
exp (𝑦𝜃 − (−𝛼 log(−𝜃)))

where 𝜃 = −𝛼/𝜇 is the canonical parameter and 𝜅(𝜃) = −𝛼 log(−𝜃)
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1.4.6 The Generalized Hyperbolic Secant (GHS) Distribution.

Let’s start with a possible variance function

𝑉 (𝜇) = 1 + 𝜇2.

Since 𝑉 (0) = 1, the support must include positive and negative values. 𝑉 is valid for all
𝜇 ∈ R.

GHS: Starting From the Variance Function.

1. Integrate 1/𝑉 to determine 𝜃

𝜃 = ∫ 𝑑𝜇
𝑉 (𝜇)

= ∫ 1
1 + 𝜇2 𝑑𝜇 = arctan(𝜇)

for 𝜇 ∈ R and 𝜃 ∈ (−𝜋/2, 𝜋/2).
2. Invert, to obtain 𝜇 = 𝜏(𝜃) = tan 𝜃.
3. Integrate 𝜏(𝜃) to determine the cumulant generator

𝜅(𝜃) = ∫ 𝜏(𝜃) 𝑑𝜃

= ∫ tan 𝜃 𝑑𝜃

= − log(cos 𝜃).

The corresponding MGF for the carrier density is sec 𝜃, which is the MGF for
the hyperbolic secant distribution. It has probability density function given by
1
2sech(𝜋𝑦/2) (it has characteristic function and density sech, [4], p.503. Note
cos(𝑖𝑧) = cosh(𝑧).) The general tilted density is therefore

1
2

sech (𝜋𝑦
2

) 𝑒𝜃𝑦+log(cos 𝜃) = 1
2

sech (𝜋𝑦
2

) cos(𝜃)𝑒𝜃𝑦.

4. The cumulant generating function is

𝐾𝜃(𝑡) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃)
= − log(cos 𝑡 − tan 𝜃 sin 𝑡).

5. The deviance is

𝑑(𝑦; 𝜇) = 2 {𝑦𝜃(𝑦) − 𝜅(𝜃(𝑦)) − (𝑦𝜃(𝜇) − 𝜅(𝜃(𝜇)))}

= 2𝑦(arctan(𝑦) − arctan(𝜇)) − log ( 1 + 𝑦2

1 + 𝜇2 )

since 𝜃(𝜇) = arctan(𝜇), cos arctan(𝜇) = 1/√1 + 𝜇2 using high school trigonometry,
and therefore

𝜅(𝜃(𝜇)) = − log ( 1
√1 + 𝜇2

) .

Notice how the 2 disappears with the square root.
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The density is

𝑓(𝑦; 𝜃) = exp(𝜃𝑦 + log(cos 𝜃))
2 cosh(𝜋𝑦/2)

1.5 Appendix: Likelihood, Scores, and the Cramer-Rao Mini-
mum Variance Bounds

Consider the likelihood 𝐿 and log likelihood 𝑙 (a monotone transformation). If 𝑙 as
a function of 𝜇 is very peaked around its MLE then an observation contains a lot of
information about the parameter, else not. At the MLE the derivatives 𝜕𝐿/𝜕𝜇 and 𝜕𝑙/𝜕𝜇
are both zero. The function is peaked (high curvature) if the second derivative is large.
At the maximum the second derivative will be negative.

Let 𝑠(𝑥; 𝜇) = 𝜕𝑙/𝜕𝜇 be the score function and 𝑓 ′ = 𝜕𝑓/𝜕𝜇. If 𝜇 is the true parameter,
then the statistic 𝑠(𝑋) = 𝑠(𝑋; 𝜇) has mean zero

E[𝑠(𝑋)] = ∫ 𝑠𝑓 = ∫ 𝜕𝑙
𝜕𝜇

𝑓

= ∫ 𝑓 ′

𝑓
𝑓

= ∫ 𝜕𝑓
𝜕𝜇

= 𝜕
𝜕𝜇

∫ 𝑓 = 0,

pulling the differential through the integral in the last step. Hence Var(𝑠) = E[𝑠2].
Differentiating E[𝑠] = 0 wrt 𝜇 gives

0 = 𝜕
𝜕𝜇

E[𝑠]

= ∫ 𝜕
𝜕𝜇

(𝑠𝑓)

= ∫ 𝜕𝑠
𝜕𝜇

𝑓 + ∫ 𝑠 𝜕𝑓
𝜕𝜇

= ∫ 𝜕2𝑙
𝜕𝜇2 𝑓 + ∫ 𝑠 𝜕𝑓

𝜕𝜇
𝑓
𝑓

= E [ 𝜕2𝑙
𝜕𝜇2 ] + E[𝑠2]

and so we get two expressions for the Fisher information ℐ(𝜇) ∶= Var(𝑠)

ℐ(𝜇) = E [( 𝜕𝑙
𝜕𝜇

)
2
]

= −E [ 𝜕2𝑙
𝜕𝜇2 ]
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If the information is large then a small deviation between 𝑥 and 𝜇 leads to a big change
in the score and so the likelihood has a high slope, meaning the likelihood function is very
peaked around 𝜇. As a result 𝜇 is easy to estimate from the data, because it is clustered
around 𝜇. Hence the name information.

If 𝑋 is normal(𝜇, 𝜎2), 𝜎2 known, then 𝑠(𝑥; 𝜇) = (𝑥−𝜇)/𝜎2 and Var(𝑠) = 1/𝜎2. Therefore
large 𝜎 generates small information. It is harder to infer the mean from a population with
a larger variance.

The Cramer-Rao bound says that when 𝑟(𝑋) is an unbiased estimator for 𝜇 then
Var(𝑟(𝑋)) ≥ 1/ℐ(𝜇). Unbiased means E[𝑟(𝑋)] = 𝜇, so ∫(𝑟 − 𝜇)𝑓 = 0. Differentiating
wrt 𝜇, remember 𝑟 is a function of the data and does not depend on 𝜇, swap differential
and integral, use product rule, and the 𝜕𝑓

𝜕𝜇 = 𝜕𝑓
𝜕𝜇

𝑓
𝑓 = 𝜕𝑙

𝜕𝜇𝑓 trick to get

0 = ∫(𝑟 − 𝜇) 𝜕𝑙
𝜕𝜇

𝑓 − ∫ 𝑓.

Applying the Cauchy-Schwarz inequality

1 = ∫(𝑟 − 𝜇) 𝜕𝑙
𝜕𝜇

𝑓

= ∫(𝑟 − 𝜇)√𝑓 𝜕𝑙
𝜕𝜇

√𝑓

≤ ∫(𝑟 − 𝜇)2𝑓 ⋅ ∫ ( 𝜕𝑙
𝜕𝜇

)
2

𝑓

= Var(𝑟)ℐ(𝜇)

yields the famous Cramer-Rao minimum variance bound (MVB) for unbiased
estimators

Var(𝑟) ≥ 1
ℐ(𝜇)

.

The greater the information, the tighter it is possible to estimate 𝜇.

When is the MVB attained? The Cauchy-Schwarz inequality is an equality iff the two
terms are proportional, which translates into

(𝑟 − 𝜇) ∝ 𝜕𝑙
𝜕𝜇

.

The constant of proportionality varies with 𝜇, so we can write

𝜕𝑙
𝜕𝜇

= 𝐴(𝜇)(𝑟 − 𝜇)

for 𝐴 independent of the observations. Multiply by 𝑟 − 𝜇 and take expectations. Using
the first equality in the Cauchy-Schwarz derivation, gives

1 = 𝐴(𝜇)Var(𝑟)

and therefore the MVB is attained iff

𝜕𝑙
𝜕𝜇

= 𝑟 − 𝜇
Var(𝑟)

,
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i.e., precisely when the distribution is exponential family! For a given mean-variance
relationship the exponential family has minimum information. Hence a one-parameter
exponential family makes fewest additional assumptions beyond the mean-variance rela-
tionship, [5, end of section 4.].

See [6] Chapter 17 for more on the topics covered in this appendix.

1.6 Appendix: General Exponential Family Distributions
An exponential family (EF) distribution generalizes a NEF in three ways. Rather than
a density factored as 𝑐(𝑦)𝑒𝑦𝜃−𝜅(𝜃), an EF requires the density factors as

𝑓(𝑦; 𝜃) = 𝑐(𝑦)𝑒𝜂(𝜃)⋅𝑇 (𝑦)−𝜅(𝜃)

where

1. The canonical parameter is replaced by a vector of parameters, still denoted 𝜃,
2. 𝜂(𝜃) is a new vector-valued natural parameter, and
3. 𝑦 is replaced by a vector-valued function 𝑇 (𝑦) of sufficient statistics.

The two vectors 𝜂(𝜃) and 𝑇 (𝑦) must have the same dimension, to compute the dot product.
When 𝜂(𝜃) = 𝜃 and 𝑇 (𝑦) = 𝑦 the exponential family is in canonical form and when 𝜃 is
a scalar it becomes a NEF.

Example. EF distributions can be used to model the mean and variance of a normal
distribution with 𝑇 (𝑦) = (𝑦, 𝑦2). �

The separation and symmetry between the roles of 𝑦 and 𝜃 ensures that 𝑇 (𝑦) is a sufficient
statistic for 𝜂2.

The Pitman-Koopman-Darmois theorem says that if a parametric class of distributions
whose domain does not depend on the parameter has a set of minimal sufficient statistic
whose number does not depend on sample size then the distribution belongs to an
exponential family.

The uniform distribution on [0, 𝜃] with parameter 𝜃 > 0 has a single sufficient statistics,
max 𝑋𝑖, but it does not belong the exponential family because the domain depends on
the parameter 𝜃. Thus, the Pitman-Koopman-Darmois theorem does not apply to the
uniform distribution.

Example. If 𝑥𝑖 are sampled from a normal with mean 𝜃 and known unit variance, then,
up to irrelevant terms and factors, the log likelihood for 𝜃 is

−1
2

∑
𝑖

(𝑥𝑖 − 𝜃)2 = −𝑛𝜃2

2
+ 𝜃 ∑

𝑖
𝑥𝑖 − 1

2
∑

𝑖
𝑥2

𝑖 .

The density of the sample factors as 𝑓(𝑥𝑖; 𝜃) = 𝑔(𝜃, ∑𝑖 𝑥𝑖)ℎ(𝑥𝑖), showing that ∑𝑖 𝑥𝑖 is a
sufficient statistic. Knowing ∑𝑖 𝑥𝑖 is sufficient to know the maximum likelihood estimate
of 𝜃, even though the value of the likelihood is unknown, since it depends on ∑𝑖 𝑥2

𝑖 . The
sum of quadratics is another quadratic, and in particular, it is concave. �

2The Fisher-Neyman factorization theorem says that 𝑇 (𝑥) is a sufficient statistic for the parameter 𝜃
if and only if 𝑓 factors as a function of 𝑥 alone times a function of 𝜃 and 𝑇 (𝑥).
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Example. If 𝑥𝑖 are sampled from a NEF with canonical parameter 𝜃 and cumulant
generator 𝜅, then, up to irrelevant terms and factors, the log likelihood for 𝜃 is

∑
𝑖

(𝑥𝑖𝜃 − 𝜅(𝜃)) = −𝑛𝜅(𝜃) + 𝜃 ∑
𝑖

𝑥𝑖.

Again, ∑𝑖 𝑥𝑖 is a sufficient statistic. Since 𝜅 is convex, the log likelihood is concave and
has a unique maximum. The pattern is identical to the normal, where 𝜅(𝜃) = 𝜃2/2. �

Example. The location parameter of a Cauchy distribution has no sufficient statistic
of dimension smaller than the data. It is also known not to be in an exponential family
because its density

𝑓(𝑥; 𝜃) = 1
𝜋

1
1 + (𝑥 − 𝜃)2

cannot be factored to separate 𝑥 and 𝜃 as required. The likelihood of 𝜃 is

− ∑
𝑖

log(1 + (𝑥𝑖 − 𝜃)2).

Plotting this as a function of 𝜃 reveals a nasty, non-concave, multi-modal curve—it contains
a lot of information that cannot be summarized in a sufficient statistic. In contrast, all
normal log likelihood plots look essentially the same. See Figure 8. �

4 3 2 1 0 1 2 3 4

80

60

40

20

0

Sample from Standard Normal

30 20 10 0 10 20 30

35

30

25

20

15

Sample from Standard Cauchy Distribution

Figure 8: Location likelihood functions (blue) derived from five samples (orange) drawn
from a standard normal (left) and standard Cauchy (right). The normal likelihood is
determined, up to vertical translation, by ∑𝑖 𝑥𝑖. It is concave and has a unique maximum.
For the Cauchy distribution, the likelihood is a complex curve depending on the particular
samples drawn. It cannot be summarized. It is not concave and has multiple local
maximums. Note different 𝑥 axis scales.

One last fact that we will not pursue: all exponential family distributions solve a maximum
entropy problem. The exponential family distribution has the greatest entropy of any
distribution with given values of 𝑇 (𝑥), when the underlying distribution of 𝑥 is given by 𝑐.

See [7] for a formal treatment of the general theory of exponential distributions and [8]
for a less formal one.
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