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1 Bailey Simon Minimum Bias Reexamined

1.1 Bias
Society is beset with problems of bias, inequity, and unfairness. Insurance, in particular,
relies on the perception and reality of fairness. Insureds will only pool their risk with one
another when they believe everyone pays a fair and unbiased rate. So insurers must not
only treat all insureds equitably, but they must also be able to demonstrate that they do
so. However, their complex and granular rating plans make that more challenging. As a
result, media and regulators have begun to question and investigate rating models. The
NAIC Casualty Actuarial and Statistical Task Force drafted a white paper describing the
Regulatory Review of Predictive Models and completed a Price Optimization White Paper
in 2015, and the CAS is reconsidering its position. Against this backdrop, now seems a
good time to reexamine two very famous Proceedings papers proposing to minimize bias
in insurance rates.

Insurance rates should be based on data and not prejudice. Establishing fairness is
challenging and encompasses many issues, such as proxy variables and differential impact.
The modeler must use a rigorous and transparent framework that avoids arbitrary,
unnecessary, or hidden assumptions. This article explains that a generalized linear model
(GLM), the natural outgrowth of minimum bias methods, satisfies these requirements,
providing an ideal model-building platform. While it is possible to build a flawed GLM
model, it is reassuring to know they provide a neutral starting point.

It is important to remember that residual error is a modeling fact of life. An oft-quoted
aphorism states, “All models are wrong; some are useful.” Models simplify to be useful, but
by simplifying, they omit details and are wrong. A statistical model balances fidelity to
sample data with out-of-sample predictive power to maximize its usefulness. An actuarial
statistical model creates a rating plan to predict expected loss costs and distributions
for each insured. Various standards are used to judge if a rating plan is acceptable.
US actuaries are familiar with the CAS Ratemaking Principle that rates should be
“Reasonable, not excessive, not inadequate, and not unfairly discriminatory.”

Another set of criteria, almost as well known and pre-dating the CAS principles by nearly
30 years, was written down by Robert Bailey and LeRoy Simon in their 1960 Proceedings
paper “Two Studies in Automobile Insurance Ratemaking.” A 1963 follow-up by Bailey,
“Insurance Rates with Minimum Bias,” developed them further. It is instructive to
reexamine Bailey and Simon’s criteria in the light of what we have learned since then and
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the issues we currently face as the front-line guardians of fair insurance rates.

1.2 Criteria
Bailey and Simon’s concern was personal automobile ratemaking in Canada. At the time,
pricing used a two-way classification plan combining a (very coarse) class plan and a merit
(experience) rating plan. Their four criteria are as follows, with italics in the original. A
set of pricing relativities is acceptable if

1. It reproduces the experience for each class and merit rating class and also the overall
experience; i.e., is balanced for each class and in total.

2. It reflects the relative credibility of the various groups involved.
3. It provides a minimal amount of departure from the raw data for the maximum

number of people.
4. It produces a rate for each sub-group of risks which is close enough to the experience

so that the differences can reasonably be caused by chance.

1.3 Assumptions
The Bailey-Simon criteria rely on several assumptions.

Balanced by class means the average rate equals each class’s experience rate, summed
over remaining classes. This formulation gives particular prominence to the average, or
mean, and uses the difference to measure balance (residual error). It also implies that
each class is large enough to be fully credible.

The discussion of relative credibility appeals to the general statistical principle of weighting
an estimate in inverse proportion to its standard error. Bailey and Simon give each cell’s
experience a weight proportional to the square root of its expected number of losses
because they assume the variance of experience loss grows with its expectation.

Bailey and Simon frame the third criterion in terms of “inequity” or deviation from
experience. It is worth quoting their discussion because of its topical relevance.

Anyone who has dealt directly with insureds at the time of a rate increase,
knows that you can be much more positive when the rate for his class is very
close to the indications of experience. The more persons involved in a given
sized inequity, the more important it is.

The ability to explain rates was as necessary in 1960 as it is today! Bailey and Simon
quantified the departure criteria using the average absolute deviation.

Chance, the fourth criterion, they assessed using a weighted 𝜒2-statistic. Based on
Canadian experience, they determined that the difference between actual and expected
relative loss ratio, scaled by the former’s standard deviation, is approximately a standard
normal, justifying their selection. They then derived a minimum bias iterative scheme to
solve for the minimum 𝜒2 relativities and show it is balanced.

Bailey’s 1963 paper generalized the minimum bias iterative scheme, discussed additive
(cents) and multiplicative (percents) models, and the need for a measure of model fit
distinct from average model bias (which is zero, by design). He proposed minimum square
error and minimum absolute error measures.
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Bailey and Simon’s principal innovation was to calculate all class relativities at once,
reflecting different mixes across each variable. Until their work, rating factors were
computed one at a time, in a series of univariate analyses. (This is different from
considering interactions between rating factors. Their two-factor rating plan was too
simple to allow for interactions.) The minimum bias method was, and remains, very
appealing: it is easy to explain and intuitively reasonable (who doesn’t want their rating
plan to be balanced by class?), and is simple to program. It is no wonder it proved so
popular.

1.4 Critique
Certain aspects of Bailey and Simon’s work may be tricky for today’s statistically trained
actuary to follow. The use of the word bias is non-standard. In statistics, an estimator is
unbiased if its expected value over samples gives the correct value. Bailey and Simon use
bias to mean residual error, the difference between a fitted value and an observation, and
as a measure of overall model fit. Balance is also used to describe the residual error in a
fitted value.

The focus on the sample mean as a sufficient statistic for the population mean needs no
explanation.

The concept of balance by class relies on the form of the linear model underlying the
classification. Bailey and Simon use a two-way classification model. The rate for risks
in class (𝑖, 𝑗) is 𝑥𝑖 + 𝑦𝑗, in the additive model. The underlying design matrix only has
elements 0 and 1. In a more general setting, including continuous covariates, the design
matrix would be more complex. Some analog of balance would still apply, but it would be
more complicated to explain.

Bailey and Simon place great emphasis on the concept of fully credible rating classes,
meaning ones where the model rate should exactly equal the experience rate. A statistical
approach quantifies the outcome distribution explicitly and produces tighter and tighter
confidence intervals for the model rate, rather than insist on equality. Some sampling
error or posterior uncertainty remains for the largest cells, even if very small.

The claim that the variance of experience grows linearly with expected losses in each class
is most interesting for the modeler. It reflects a traditional actuarial compound Poisson
claims generating process. A severity distribution and an annual frequency characterize
each risk cell. The distribution of aggregate losses has a Poisson frequency distribution,
with mean proportional to expected losses, and a fixed severity distribution. Its variance
is proportional to its mean. These assumptions can fail in at least two ways.

First, there can be common risk drivers between insureds, such as macroeconomic condi-
tions or weather. These result in a correlation between insureds. A negative binomial
frequency captures the effect, replacing the Poisson. The resulting aggregate distribution
has a variance of the form 𝜇(𝑎 + 𝑏𝜇) for constants 𝑎 and 𝑏, where 𝜇 is the mean. The
variance of a large portfolio grows almost quadratically with its mean.

Second, a quadratic mean-variance relationship can arise for catastrophe risks, where
portfolio growth corresponds to paying a greater proportion of losses over a fixed set of
events. The actuary’s understanding of the loss generating process informs the possible
relationship between the mean and the variance of losses in a cell. It should fall somewhere
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between linear and quadratic.

Bailey and Simon test the fourth criterion, that each sub-group’s experience should be
close enough to its rate that differences could reasonably be caused by chance, using an
aggregate 𝜒2-statistic. There is a clear opportunity to enhance model assessment using a
granular, cell-by-cell evaluation of chance deviation, based on the modeled distribution of
losses.

Finally, the discussion of both the third and fourth criteria introduce modeler discretion:
which measure of overall model bias should be employed? Least squares, minimum absolute
deviation, and minimum 𝜒2 are all mooted. The modeler should avoid unnecessary choices.
Is there a better way to select a measure of model fit?

1.5 Homework
In the next sections, we will see how modern statistics has developed the ideas presented
so far. As an ex-college professor, I would be remiss if I didn’t give you some homework
to prepare. Although data science deals with massive data sets and builds very complex
models, you can understand its fundamental problems by considering straightforward
examples. Here are two that capture our essential conundrum. It would help if you
considered how to solve them before reading the sequel.

The first is a two-way classification, with each level taking two values. You can think:
youthful operator yes/no and prior accidents yes/no. The data is laid out below. You
want to fit an additive linear model.

Level 2 \ Level 1 No Yes

No 1 2
Yes 3 7

The second is a simple linear regression problem. You want to fit a line through the
following data.

Observation 𝑖 Covariate 𝑥𝑖 Observation 𝑦𝑖

1 0 1
2 1 2
3 2 4

In both examples, assume the same volume of data underlies each observation, so there is
no need for weights. In the first, make the Bailey and Simon assumption that the total
experience across each level of each dimension is credible, i.e., the row and column totals
are credible.

For partial credit, start by laying out the first question so it looks more like the second
one.

The difficulty is clear: there are fewer parameters than data points, and so the requested
model will not fit exactly. How should you apportion the model miss? Obviously, with a
clever selection of response function you can create many models that do fit exactly—or
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over-fit exactly. Please resist the urge to expound upon these and focus on the stated
question.

1.6 Development
In a GLM, an observation’s mean value is a function of a linear combination of covariates,
and the observation is sampled from an exponential family distribution. The parameters
are determined using maximum likelihood. The function linking the mean domain to the
linear domain is called the link function, customarily denoted 𝑔.

Exponential family distributions are assumed to be non-degenerate. They are parameter-
ized by a canonical parameter 𝜃 that is a function of the mean, and which we will identify
in a moment. Most importantly, their density (or probability mass function) factors as

𝑓(𝑦; 𝜃) = 𝑐(𝑦)𝑘(𝜃)𝑒𝑦𝜃,

with symmetric roles for the observation 𝑦 and parameter 𝜃. Both 𝑐 and 𝑘 are non-negative
functions. The factorization reflects the dual meaning of the density: it is the probability
of observing 𝑦 if the true parameter is 𝜃 as well as the likelihood of the parameter 𝜃 given
an observation 𝑦.

Since 𝑘 is non-negative, we can write 𝑏(𝜃) = 𝑒−𝜅(𝜃) on the support of 𝑓, giving 𝑓(𝑦; 𝜃) =
𝑐(𝑦)𝑒𝑦𝜃−𝜅(𝜃). It follows that the log likelihood of 𝜃 is 𝑙(𝑦; 𝜃) = log(𝑐(𝑦)) + 𝑦𝜃 − 𝜅(𝜃).
Differentiating with respect to 𝜃 and setting equal to zero shows the maximum likelihood
estimator (MLE) of 𝜃 given 𝑦 solves the score equation 𝑦 − 𝜅′(𝜃) = 0. Given a sample of
independent observations 𝑦1, … , 𝑦𝑛, the MLE solves ̄𝑦 − 𝜅(𝜃) = 0, where ̄𝑦 is the sample
mean. Thus the mean is a sufficient statistic for 𝜃 in an exponential family.

If a random variable 𝑌 has an exponential family distribution with density 𝑓, then it has
a cumulant generating function1 𝐾(𝑡) ∶= log E[𝑒𝑡𝑌] = 𝜅(𝑡 + 𝜃) − 𝜅(𝜃). The mean of 𝑌 is
given by 𝐾′(0) = 𝜅′(𝜃) = 𝜇, which identifies the relationship between 𝜇 and 𝜃. 𝜅′(𝜃) is
often denoted 𝜏(𝜃). The variance of 𝑌 is given by 𝐾″(0) = 𝜅″(𝜃) = 𝜏 ′(𝜃). By assumption,
exponential family distributions are non-degenerate and therefore have a strictly positive
variance. Three important conclusions follow:

1. that 𝜅 is a convex function, and hence 𝑙 is concave ensuring a unique maximum
likelihood estimate,

2. that 𝜏 is increasing and hence invertible, which implies
3. that the variance of 𝑌 is a function of its mean.

The third conclusion, the mean-variance relationship, is captured by the variance function,
𝑉 (𝜇) = 𝜅″(𝜏−1(𝜇)) = 1/(𝜏−1)′(𝜇) (chain rule).

If we start with a variance function defined on a mean domain we can work backwards,
solving two differential equations, to determine a cumulant generating function and hence
a unique exponential family distribution with that variance function and domain. 𝑉
only determines the distribution uniquely within the exponential family, not within all
distributions. For example, 𝑘𝑋 for any 𝑋 with E[𝑋] = 1 and Var(𝑋) = 1 has 𝑉 (𝜇) = 𝜇2,

1Cumulants are combinations of higher moments that are additive for independent variables. The
first three cumulants are the mean, variance and third central moment; thereafter they are different from
central and non-central moments. The cumulant generating function behaves analogously to the moment
generating function.

5



but the only exponential family distribution with variance function 𝑉 (𝜇) = 𝜇2 is the
gamma (with a different parameterization).

It is possible to show that using the exponential family distribution with variance function
𝑉 is equivalent to making no assumptions other than the mean-variance relationship.
Technically, the exponential family has minimal Fisher information. This is a very
reassuring fact for the modeler, who must specify some distribution to build a statistical
model necessary to evaluate Bailey and Simon’s criteria. But making a choice is fraught:
what evidence backs it up?

The actuary knows from the physical, economic, and contractual operation of insurance
that a reasonable 𝑉 will fall between a linear and quadratic function. Using an exponential
family distribution can test various alternatives in this range while making no additional
assumptions. And the story gets better. It turns out that every 1 < 𝑝 < 2 determines an
exponential family distribution with 𝑉 (𝜇) = 𝜇𝑝, called a Tweedie distribution. Tweedie
distributions are ideal for modeling insurance losses because they are compound Poisson
distributions with a gamma severity (the identification is made by solving the differential
equations alluded to above and identifying the resulting cumulant generating function).
They take non-negative values and are continuous except for a probability mass at 0. As
𝑝 ↓ 1, the Tweedie approaches a Poisson and as 𝑝 ↑ 2, a gamma.

Now consider the fourth criterion: chance. Let’s model 𝑌 using an exponential family
distribution with the identity link function. Given an observation 𝑦 in a cell with fitted
mean 𝜇, how should we evaluate whether the difference 𝑦 − 𝜇 “could reasonably be caused
by chance”? The residual error, 𝑦 −𝜇, lacks scale and context. The theory of linear models
suggests various standardized residuals, such as the Pearson residual (𝑦 − 𝜇)/√𝑉 (𝜇). A
frequentist creates a confidence interval such as 𝑦 ± 2√𝑉 (𝜇) for the class mean. If 𝜇 falls
within the confidence interval, then the experience could reasonably occur by chance. An
obvious problem with this approach is the need for it to hold simultaneously for many
observations, which will be vanishingly small.

Alternatively, we can use likelihood to evaluate chance. A class rate is likely if its likelihood
is close to the maximum likelihood. In the mean parameterization, the log likelihood
becomes 𝑙(𝑦; 𝜇) = log(𝑐(𝑦)) + 𝑦𝜏−1(𝜇) − 𝜅(𝜏−1(𝜇)). At the maximum of 𝑙, the score
function

𝜕𝑙
𝜕𝜇

= 𝑦 − 𝜇
𝑉 (𝜇)

= 0.

Remember, 𝜅′(𝜏−1(𝜇)) = 𝜇 by definition. Thus the score is a good measure of chance. For
the most likely parameter it is zero. When the score is small the rate 𝜇 is reasonably likely,
but when it has a large absolute value, 𝑙 falls off quickly from its maximum value and 𝜇 is
much less likely. Although dividing by the variance, rather than standard deviation, seems
odd from a classical statistics perspective, it makes sense when considering likelihoods.

Finally, we need an overall assessment of model fit that avoids arbitrary choices. We can
create one from the likelihood function. We can compare the model-constrained likelihood
with an unconstrained, saturated model likelihood to get a measure called model deviance.
Since we already know the maximum likelihood estimate for 𝜇 is 𝑦, the deviance will be2

𝑑(𝑦; 𝜇) = 2(𝑙(𝑦; 𝑦) − 𝑙(𝑦; 𝜇)) ≥ 0.
2There is a hidden assumption here; can you see it?

6



The factor of 2 is included to ensure agreement with the normal distribution. Since
𝜕𝑑/𝜕𝜇 = −2 𝜕𝑙/𝜕𝜇 we see

𝑑(𝑦; 𝜇) = 2 ∫
𝑦

𝜇

𝑦 − 𝑚
𝑉 (𝑚)

𝑑𝑚.

The limits of integration are chosen so that 𝑑 has the correct derivative, forcing 𝜇 on the
bottom, and 𝑑(𝑦; 𝑦) = 0 forcing 𝑦 on top. Notice that the nuisance log(𝑐(𝑦)) term in 𝑙
disappears in 𝑑.

What is the deviance for a Tweedie, 𝑉 (𝜇) = 𝜇𝑝? For 𝑝 ≠ 1, 2, simply integrate:

𝑑(𝑦; 𝜇)
2

= ∫
𝑦

𝜇

𝑦 − 𝑚
𝑚𝑝 𝑑𝑚

= 𝑦𝑚−𝑝+1

1 − 𝑝
− 𝑚−𝑝+2

2 − 𝑝
∣
𝑦

𝜇

= − 𝑦2−𝑝

(2 − 𝑝)(𝑝 − 1)
+ 𝑦𝜇1−𝑝

𝑝 − 1
+ 𝜇2−𝑝

2 − 𝑝
.

The density of the exponential family can be expressed in terms of the deviance as

𝑓(𝑦; 𝜇) = 𝑐0(𝑦) exp {−𝑑(𝑦; 𝜇)
2

}

where 𝑐0(𝑦) = 𝑐(𝑦)𝑒𝑙(𝑦;𝑦). It is an easy exercise to check that when 𝑉 (𝜇) = 1 the deviance
is (𝑦 − 𝜇)2, and so the corresponding exponential family distribution is the normal.
(Exercise: work out which distribution corresponds to 𝑉 (𝜇) = 𝜇.)

To summarize: we can fit a GLM using maximum likelihood or, equivalently, using
minimum deviance. The deviance provides a measure of model fit customized to each
exponential distribution family and can be used to compare models using that error
distribution. Scaled differences in deviance have an asymptotic 𝑐ℎ𝑖2 distribution. Other
methods are needed to choose between models using different error distributions. Deviance
generalizes the fact that maximum likelihood for the normal is the same as minimum
square error.

GLMs encompass a wide range of model forms. They are much more flexible than normal-
error general linear models because they separate the linearizing transformation, the link
function, from the error distribution. A linear model uses the same function to linearize
and to stabilize the variance. Linear, logistic, and Poisson regression, and analysis of
variance are all special cases of GLMs.

Suppose the linear predictor for a unit (observation) 𝑦 is specified as 𝜂 = x𝛽, where x is
a vector of covariates and 𝛽 is a parameter vector, and the mean of 𝑦 is linked to 𝜂 by
𝑔(𝜇) = 𝜂. Then the log likelihood function becomes 𝑙(𝑦; 𝜇) = log(𝑎(𝑦) + 𝑦𝜏−1(𝑔−1(x𝛽)) −
𝜅[𝜏−1(𝑔−1(x𝛽))]. Therefore, using the chain rule, the score for 𝛽𝑖 is given by

𝜕𝑙
𝜕𝛽𝑖

= 𝜕𝑙
𝜕𝜃

𝜕𝜃
𝜕𝜇

𝜕𝜇
𝜕𝜂

𝜕𝜂
𝜕𝛽𝑖

= (𝑦 − 𝜇
𝑉 (𝜇)

) 1
𝑔′(𝜇)

𝑥𝑖.

The decomposition of the score reflects the components of the GLM:
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y θ µ η = xβ

Observation
Canonical
parameter

Mean
parameter

Linear
model

∼
Exponential

family

∂l

∂θ
= y − κ′(θ)

κ′(θ) = µ

τ = κ′

V (µ) = τ ′(τ−1(µ))

∂θ

∂µ
=

1

V (µ)

g

Link function

∂µ

∂η
=

1

g′(µ)

∂η

∂βi
= xi.

When the linear model is a two-way classification, the score equations 𝜕𝑙/𝜕𝛽𝑖 = 0 give the
famous Bailey minimum bias iterations, only substituting a variance-adjusted (𝑦−𝜇)/𝑉 (𝜇)
bias measure in place of the normal model’s 𝑦 −𝜇. While not recommended for production
work, the iterative solution is easy to implement in a spreadsheet, providing an excellent
way to test your understanding and confirm results from R glm or SAS proc genmod or
other implementations—see the Example below.

Parameters determined by solving a minimum bias iterative scheme generally agree with
the maximum likelihood estimates of a GLM with some variance function [1], even when
the scheme is formulated without an explicit statistical model. The situation is analogous
to Mack’s identification of the stochastic model underlying the chain-ladder method.
Before Mack, we happily squared triangles without knowing the underlying assumptions.
But knowing the implied statistical model is an essential part of assessing whether the
model is appropriate for its intended use.

1.7 Examples
Here are simple two examples which capture the essence of the modeling problem. Assume
that each cell contains the same number of exposures and model using an exponential
family distribution with variance function 𝑉 (𝜇) = 𝜇𝑝.

The first example is a two-way classification, with each level taking two values. You can
think: youthful operator yes/no and prior accidents yes/no. The observations for no/no,
no/yes, yes/no, yes/yes are 𝑦0 = 1, 𝑦1 = 2, 𝑦2 = 3, and 𝑦3 = 7. The linear model has
means 𝛽0, 𝛽1, 𝛽2 and 𝛽1 + 𝛽2 − 𝛽0 (equivalently, 𝛽0, 𝛽0 + 𝛽1, 𝛽0 + 𝛽2 and 𝛽0 + 𝛽1 + 𝛽2).

The second is a linear regression, with covariate taking values 0, 1, 2 and outcomes 1, 2
and 4.

In both cases it is clear the model does not fit perfectly. How should the “bias” be
apportioned between the classes? The appropriate bias is variance-adjusted, (𝑦 −𝜇)/𝑉 (𝜇).

In the first model the bias for each cell has the same absolute value 𝑏, and is split
𝑏, −𝑏, −𝑏, 𝑏, to achieve balance by class and in total. In the linear model it will be
𝑏, −2𝑏, 𝑏, achieving a covariate-weighted analog of balance (𝜕𝜂/𝜕𝛽1 = 0, 1, 2 for the three
observations). The value of 𝑏 depends on 𝑉, i.e., on 𝑝, reflecting the fact there are many
balanced models.

To find a specific solution, set up a spreadsheet as shown below and use Solver to minimize
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the deviance (computed in the Development section) over 𝛽𝑖. The tables show the solution
for 𝑝 = 1.6. Solver will readily handle the problem because the deviance is a well-behaved,
concave function with a unique maximum. You could also use the minimum bias iterations,
or mimic the GLM iteratively re-weighted least squares algorithm. All of these are easy
to implement in Excel. It is worth noting that the solutions are maximum likelihood
parameter estimates for a density that you can’t actually write down in closed form!

Exercise: What happens to the fit as you vary 𝑝? Why?

𝑥𝑖0 𝑥𝑖1 𝑥𝑖2 𝑦𝑖 𝛽 𝜇 𝑉 (𝜇) Score 𝑏 𝑑(𝑦; 𝜇)

1 0 0 1 0.91075 0.91075 0.86107 0.10365 0.00880
0 1 0 2 2.42871 2.42871 4.13620 -0.10365 0.04917
0 0 1 3 3.92352 3.92352 8.91006 -0.10365 0.10996

-1 1 1 7 5.44148 15.03651 0.10365 0.14068
0.30860

Constant 𝑥𝑖 𝑦𝑖 𝛽 𝜇 𝑉 (𝜇) Score 𝑏 𝑑(𝑦; 𝜇)

1 0 1 0.93963 0.93963 0.90518 0.06669 0.00389
1 1 2 1.68495 2.62458 4.68269 -0.13338 0.09586
1 2 5 4.30952 10.35349 0.06669 0.04248

0.14223

It’s always good to double check your work. The R code below reproduces the Excel
Solver solution.
library(tidyverse)
library(statmod)

# two way classification
df = tibble(a=c(1,0,0,-1), b=c(0,1,0,1), c=c(0,0,1,1), y=c(1,2,3,7))
m1 = glm(data=df, family=tweedie(var.power=1.6, link.power=1), y~a+b+c-1)
summary(m1)

# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# a 0.91075 0.50969 1.78687 0.32481
# b 2.42873 1.04994 2.31320 0.25977
# c 3.92350 1.38479 2.83328 0.21600
#
# Residual deviance: 0.3086021 on 1 degrees of freedom

# linear regression
df2 = tibble(x=c(0,1,2), y=c(1,2,5))
m2 = glm(data=df2, family=tweedie(var.power=1.6, link.power=1), y~x)
summary(m2)

# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 0.939632 0.342186 2.74597 0.22233
# x 1.684947 0.525511 3.20630 0.19247
#
# Residual deviance: 0.1422328 on 1 degrees of freedom
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1.8 Lessons
GLMs allow actuaries to model with an error distribution that incorporates known facts
about the loss generating process, but overlays no further arbitrary assumptions. The
distribution is specified by the relationship between the mean and variance. It provides
a variance-adjusted score, or measure of bias, that satisfies the balance equations and
a quantification of model fit. Model parameters can be estimated using an efficient
algorithm, implemented in R and Python, or from first principles in a simple spreadsheet.
GLMs naturally extend Bailey and Simon’s four criteria, giving them more exact meaning.
Since GLMs assume the input data is representative, unbiased, and credible the modeler
must always exercise good judgment. Nevertheless, GLMs provide an excellent framework
the actuary can use to build fair and transparent rates. Long live statistics and rational,
fact-based government.
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