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This note provides a short and motivated proof of Theorem 4.6 from Bielecki et al. (2024),
showing that the risk measure associated with a strictly concave distortion on an atomless
probability space is not weak acceptance time consistent.

Let (2,7 ,P) be an atomless probability space. Then for every p € (0,1) there exists
B € F with P(B) = p, hence (Q,5,P) supports Bernoulli(p) variables (Follmer and
Schied 2016, Appendix A27). Let ¥, C F, C &5 = F be afiltration at times ¢ € {0, 1,2}.
Let g : [0,1] — [0, 1] be a concave distortion with g(0) = 0 and g(1) = 1.

For a bounded profit and loss variable X, the dynamic distortion risk measure of Bielecki
et al. (2024) is the conditional Choquet integral

0o 0
P = [ gP-X >y | Tyt [ (oP-X >y T) - 1)dy.
0 —00
Weak acceptance time consistency (WATC) for p means: for s > t,
AX) <0 = pl(X) <0,
For a nonnegative bounded loss L > 0, define the induced price functional

w(L) = b1 = T GPL >y | 7)) dy,
0

since the second integral vanishes for X = —L.

By cash additivity, p{(m — L) = «f(L) — m. Hence WATC is equivalent to: for all
bounded L > 0 and all constants m, if 77(L) < m a.s., then 7/(L) < m a.s.
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Intuitively, WATC can fail even in a two-step tree. Consider a mixture of two conditional
loss distributions, one low-spread and one high-spread, with the mixture component
revealed at ¢ = 1. Choose them so that the time-1 conditional distortion price is the
same on both branches, so p;(m — L) = 0 statewise. At ¢t = 0, however, p, applies the
distortion to the unconditional mixture distribution, which exposes more extreme tail
behavior than either conditional law alone. The theorem below formalizes this mechanism
and shows that any non-trivial concave distortion yields such a counterexample, and hence

fails WATC.

Theorem 0.1 (Nontrivial concave distortions fail WATC (Bielecki et al. 2024 Theorem
4.6)). Let g be a concave distortion with g(0) = 0, g(1) = 1. Assume g is neither the
identity (g(s) = s) not the maz distortion (g,,..(s) = {s > 0} indicator function). Then
there exists a two-step filtered two-branch tree embedded in (2, F,P), and a bounded X
such that

pl(X) <0 a.s. but pg(X) >0,

so p9 is not weakly acceptance time consistent.
Proof. By assumption, there exist r,s € (0,1) such that g(sr) > sg(r). (Otherwise

g(sr) = sg(r) for all r,s, forcing g(u) = u. Here we also rely on g # g, for strict
inequality.)

Fix such (r,s) and set w := g(r) € (0,1).

Next, we build a tree and match time-1 prices. Let S be a Bernoulli random variable with
P{S =1} = s, and let F, = o(5). On each state, let the loss L take two values with the
same conditional probabilities:

{P{L:b1|S:0} =r d {P{L:b2|5’:1} =r
P{IL=a,|S=0} =1—r P{L=ay|S=1} =1—r
with ay < a; < by < bs.
For a two-point loss Y € {a,b} with P{Y = b} = r, one has

m™(Y)=a+ (b—a)w.
Hence, for any m > 0 and any choice of a € (0,m), setting

b:m—(l—w)a
w

gives m9(Y) = m. Choose 0 < ay < a; < m and define by, b, by this formula; then
ay < ay < by < by and
(L) =m

in each state S =0, 1.

We now show the time-0 price strictly exceeds m. Unconditionally, L has four atoms with
probabilities
s(1—7), 1—=s)(1—=7r), (1—s)r, sr

on the ordered values a, < a; < by < by. Writing out 7g(L) as the integral of survival
probabilities on the three intervals (a4, ay), (ay,bq), (by,by) yields

m§(L) = m + (ay — ay)D,
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where
1—w
D:i=g(l—s(1—r))—1+ Tg(sr).
Concavity gives the chord bound ¢g(1 —s(1 —7)) > 1 — s+ sw (mixing 1 and r), and the
choice of (r, s) gives g(sr) > sw. Substituting,

1 —
D>(1—-s+sw)—1+ 2

sw=20,
w

so mo (L) > m.

Finally, let X :=m — L. Then

showing that WATC fails. O]

Remark 0.1.

1. Bielecki et al. (2024) parameterize distortions via a mixing measure p (Kusuoka/spec-
tral representation). This is an equivalent encoding of the same spectral functional.

2. The counterexample requires g(r) € (0,1) and a strict chord inequality at some tail
level. It fails only for the two degenerate endpoint cases: the identity and the max
distortion g,,., (which yields essential supremum for nonnegative losses).

3. The argument uses only concavity, so it covers discontinuous distortions (e.g. with
g(04) > 0) and does not require absolute continuity.
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