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Figure 1: All severity curves!

[M]athematics is about a world that is not quite the same as this real one
outside the window, but it is just as obstinate. You can’t make things do what
you want them to. [T]he very fact that I can’t just boss these mathematical
entities around is evidence that they really exist. John Conway quoted in
Roberts (2024).
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1 Introduction
Everyone who’s modeled with GLMs has seen something like Table 1 describing the class of
Tweedie Power Variance Family (PVF) distributions. This version is from the R statmod
documentation.

Table 1: Exponential families with power variance functions.

Distribution Name Variance Function 𝑉 (𝜇)

Gaussian 𝜇0 = 1
Poisson 𝜇
Compound Poisson, non-negative with mass at 0 𝜇𝑝, 1 < 𝑝 < 2
Gamma 𝜇2

Inverse Gaussian 𝜇3

Stable, support on 𝑥 > 0 𝜇𝑝, 𝑝 > 2

Table 1 is fascinating and raises several questions:

• What is a variance function?
• Why these distributions?
• Why this order?
• What about 0 < 𝑝 < 1? Or 𝑝 < 0?

The Tweedie PVF (TPVF) turns out to be a large, three-parameter class of distributions
including the Poisson, gamma, and Gaussian distributions. Table 2 shows the full story
and this post will gradually explain all its entries. The theory of TPVFs is an example of
Conway’s quote: you can control the starting definitions but not where things go from
there! It is also an example of Mathematical Tourism. For me, this theory is like visiting
and walking in the Lake District: beautiful views an unexpected connections. It’s like the
crossing from Wast Water over the Sty Head Pass between Great Gable and Scafell Pike
into the stunning valley of Borrowdale.

This post has eight main parts plus an supplement on the software.

1. Introduction – you’re here.
2. Setting the Stage
3. Theoretic framework
4. The NEF Nonet
5. Identifying the TPVF distributions
6. Parameter interpretation
7. For Four/Five Esses
8. Actuarial modeling reconsidered
9. Software supplement

The post borrows heavily from my Four Part Series on Minimum Bias and Exponential
Family Distributions

Themes: unreasonable effectiveness of maths; mapping real world to maths world; hiding
in plain sight: looks different but actually the same, nature of actuarial modeling, what is
a unit?
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The post uses several tools from my aggregate software, Mildenhall (2024), including the
FourierTools and the Tweedie classes. These leverage Fourier and Fast Fourier methods
to estimate densities which have no closed form expression.

Terminology. The class of Tweedie power variance families consists of multiple natural
exponential families. One family is the Tweedie Poisson-gamma compound distributions
genus which we call a Tweedie distribution.

Bent’s uber paper ref Jørgensen (1987).

1.1 The Full Story
We are going to explain and illustrate all the entries in Table 2.
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Table 2: Properties of the Tweedie Power Variance (TPV) family distributions.

Name 𝑝 𝛼 𝑉 (𝜇) 𝑑 (𝑦; 𝜇), 𝜎2 = 𝜆 = 1 𝑐(𝑦;𝜆) 𝜅(𝜃) 𝜏(𝜃) Θ Ω 𝑆 Steep Regular Name

Extreme stable (−∞, 0) (1, 2) 𝜇𝑝 as Tweedie as Tweedie R≥0 R>0 R No No Ext stbl

Gaussian 0 2 1 (𝑦 − 𝜇)2
√︂

𝜆

2𝜋
exp(−𝜆𝑦2/2) 1

2
𝜃2 𝜃 R R R Yes Yes Gaussian

None (0, 1) (2,∞) None

Poisson 1 −∞ 𝜇 2
{
𝑦 log

(
𝑦

𝜇

)
− (𝑦 − 𝜇)

}
𝛿𝑘𝜆

𝑘/𝑘! 𝑒𝜃 𝑒𝜃 R R>0 {0, 1, 2, . . . } Yes Yes Poisson

Tweedie (1, 2) (−∞, 0) 𝜇𝑝 2
(

max(𝑦, 0)2−𝑝

(1 − 𝑝) (2 − 𝑝) −
𝑦𝜇1−𝑝

1 − 𝑝
+ 𝜇2−𝑝

2 − 𝑝

)
𝛼 − 1
𝛼

(
𝜃

𝛼 − 1

)𝛼 (
𝜃

𝛼 − 1

)𝛼−1
R<0 R>0 R≥0 Yes Yes Tweedie

Gamma 2 0 𝜇2 2
(
log

𝑦

𝜇
+ 𝑦 − 𝜇

𝜇

)
𝜆𝜆𝑦𝜆

Γ(𝜆)
𝑦

− log(−𝜃) −1/𝜃 R<0 R>0 R>0 Yes Yes Gamma

Pos. ext. stbl (2, 3) (0, 1/2) 𝜇𝑝 as Tweedie as Tweedie R≤0 R>0 R>0 Yes No Pos. ext. stbl

Inverse Gaussian 3 1/2 𝜇3 (𝑦 − 𝜇)2

𝜇2𝑦

√︂
𝜆

2𝜋𝑦3 exp
(
− 𝜆

2𝑦

)
−
√
−2𝜃

1
√
−2𝜃

R≤0 R>0 R>0 Yes No Inv Gauss

Pos. ext. stbl (3,∞) (1/2, 1) 𝜇𝑝 as Tweedie as Tweedie R≤0 R>0 R>0 Yes No Pos. ext. stbl

Extreme Cauchy ∞ 1 𝑒𝜇 2𝛽−2 (𝑒−𝛽𝑦 + 𝑒−𝛽𝜇 (𝛽𝑦 − 𝛽𝜇 − 1)
)

𝜃 (1 − log(−𝜃)) − log(−𝜃) R<0 R R Yes Yes Ext Cauchy
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Table 2 uses the following terms, all of which are explained in due course.

• The parameters 𝑝 and 𝛼 are related by 𝑝 = (𝛼 − 2)/(𝛼 − 1) and 𝛼 = (𝑝 − 2)/(𝑝 − 1),
so (1 − 𝑝)(1 − 𝛼) = (𝑝 − 1)(𝛼 − 1) = −1. They are restricted to the range [−∞, 2].

• The distributions all have Lévy measure proportional to 𝑒𝜃𝑥

𝑥𝛼+1 when 𝛼 < 2.
• 𝜏 is the mean value mapping from the canonical parameter 𝜃 to the mean parameter

𝜇, the mean of the reproductive form.
• Θ is the set of canonical parameters 𝜃 so that ∫ 𝑒𝜃𝑦𝑐(𝑦) 𝑑𝑦 < ∞.
• Ω is the mean domain, that is, the set of possible means.
• 𝑆 is the support of the family. The trick here is distributions like the Poisson where

Ω is a strict subset of 𝑆, because 0 is a legitimate observation but not an allowed
mean.

• Ω is a subset of 𝐶 = conv(𝑆)−, the closure of the convex hull of 𝑆.
• A natural exponential family is regular if the canonical parameter domain Θ is

open.
• It is steep when Ω = 𝐶∘, i.e., any value in interior of the convex closure of the

support is a possible mean.
• The Levy 1/2-stable distribution is a limit case of the inverse Gaussian as 𝜃 → 0.

1.2 Lietfaden

Figure 2: Overall plan of post.

1.3 Remember…
• Pitman and Pitman (2016) (Euler-Cauchy-Saalschütz integral - gamma with com-

pensated exponential terms! Nice!
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• Bar-Lev and Enis (1986) talks about reproducibility
• Bar-Lev, Bshouty, and Letac (1992) has a treatment of Tweedie family from per-

spective of self-decomposability.
• Swap or symmetry reciprocal?
• Letac (2004) dicusses 𝑉 (𝜇) = 𝑒𝜇 as a variance function and reciprocity. States the

NEF generated by a positive stable distribution whose parameter is in (0, 1) has no
reciprocal.

• Menn and Rachev (2006) covers the fancy Simpson’s method use of FFTs.
• The papers by Thomas Simon on unimodality look interesting too, e.g., Simon

(2015).
• Books (all in Mendeley)

– Hougaard (2000)
– Wüthrich and Merz (2023)
– Kuchler and Sorensen (1997)
– Dunn and Smyth (2018)
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2 Setting the Stage
static portfolios — loss or normalized loss, pure premium, loss ratio — defining a unit or
line — heterogeneous units — GLM modeling

2.1 Volume and Loss Aggregation
In modeling insurance losses, volume is a central consideration that affects both properties
of the chosen loss distribution and statistical parameter inference. Volume reflects two
dimensions: the size of an individual risk and the time horizon over which losses are
accumulated. The resulting expected volume of losses depends on the product of exposure
size and time horizon.

Size is measured using an exposure base. Units for auto, value for property, revenue or
area for general liability, contract value for surety, payroll for workers compensation are
examples. Each has issues. Ideally, size would be directly proportional to expected losses
per unit of time, and we presume we have an ideal measure of size, despite essentially
none actually existing. Call size 𝑧.

Time horizon is measured in some time unit, usually years. However, the unit is an
arbitrary choice � an uncomfortable situation. Two time units are canonical: an instant
and forever. The latter being too long, focus on the former. Turns out, it ties naturally
to modeling in a multiple-state model or using a Lévy process, both of which are based
on instantaneous transition rates @ REFs.

With volume in hand, modeling can look at total losses or losses per unit exposure (for a
given time period), per time period (for a given exposure) or per unit per period. Losses
are modeled by additive exponential dispersion models (EDMs) and pure premiums by
reproductive EDMs. Some definitions are in order.

From Prob Models for Ins Research

Losses have a complicated, dynamic structure. An insurance portfolio’s loss depends on
the expected loss rate and the length of time it is exposed, analogous to distance equals
speed multiplied by time. Total losses 𝐿 = 𝐿(𝑒, 𝑡) over a period (0, 𝑡] are a function of
exposure and time. Exposure is measured in homogeneous units, each with the equal
expected loss rates. What is the best way to model 𝐿(𝑒, 𝑡)?

Is it reasonable to assume losses occur at a constant rate? Generally, not. Even for
earthquake losses, where events appear perfectly random, the occurrence time influences
losses. Did the loss occur during the commute, working hours, nighttime, or over a
weekend? There are two ways to address this reality. One, over the time frame of an
insurance policy the rate averages out and can be treated as constant. Two, use a time
change to equalize the claim rate. The time change, called an operational time, runs time
faster during high expected loss periods and slower during low. It provides the perfect
clock against which to earn premium. As always, what matters is the deviation from
expected. We proceed assuming a constant expected rate of claim occurrence, justified by
either of these rationales.

If insured risks are independent, we could posit that losses over (0, 𝑡1 + 𝑡2] should have
the same distribution as the sum of independent evaluations over (0, 𝑡1] and (0, 𝑡2]. But
there could be good reasons why this is not the case. Weather, for example, is strongly
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autoregressive: weather today is the best predictor of the weather tomorrow. Failure of
independence manifests itself in an inter-insured and inter-temporal loss dependency or
correlation. However, using common operational time and economic drivers can explain
much of this correlation; see Avanzi, Taylor, and Wong (2016) and the work of Glenn
Meyers on contagion.

Having stipulated caveats for expected loss rate and dependency, various loss models
present themselves. A homogeneous model says 𝐿(𝑒, 𝑡) = 𝑒𝑅𝑡 where 𝑅𝑡 represents a
common loss rate for all exposures. This model is appropriate for a stock investment
portfolio, with position size 𝑒 and stock return 𝑅𝑡. It implies the CV is independent of
volume.

A homogeneous model has 𝐿(𝑒, 𝑡) ∼ 𝐷(𝑒𝑡, 𝜙), a distribution with mean 𝑚 = 𝑒𝑡 and
additional parameters 𝜙. A GLM then models 𝑚 as a function of a linear combination of
covariates, often with 𝑒 as an offset. We can select the time period so that the expected
loss from one unit of exposure in one period of time equals 1. In this model, time and
exposure are interchangeable. The loss distribution of a portfolio twice the size is the
same as insuring for twice as long. Thus we can merge loss rate and time into one variable
𝜈 and consider 𝐿 = 𝐿(𝜈). If 𝜈 is an integer then 𝐿(𝜈) = ∑1≤𝑖≤𝜈 𝑋𝑖 where 𝑋𝑖 ∼ 𝐿(1) are
independent. Therefore Var(𝐿(𝜈)) = 𝜈Var(𝐿(1)) and the CV of 𝐿(𝜈) is 𝐶𝑉 (𝐿(1))/

√
𝜈.

The CV of losses are not independent of volume, in contrast to the investment modeling
paradigm. The actuary knows this: the shape of the loss distribution from a single policy
(highly skewed, large probability of zero losses) is very different to the shape for a large
portfolio (more symmetric, very low probability of zero losses.)

As always, reality is more complex. Mildenhall (2017) discusses five alternative forms
for 𝐿(𝑒, 𝑡). It shows that only a model with random operational time is consistent with
NAIC Schedule P data, after adjusting for the underwriting cycle.

The focus of this section is to determine which distributions are appropriate for modeling
homogeneous blocks with a constant loss rate relative to (operational) time. These
distributions are used in predictive modeling for ratemaking and reserving, for example.
Other applications, such as capital modeling and Enterprise Risk Management, model
heterogeneous portfolios where understanding dependencies becomes critical. These are
not our focus and are therefore ignored, despite their importance.

The ability to embed a static loss model 𝐿 into a family, or stochastic process, of models
𝐿(𝜈) appropriate for modeling different volumes of business over different time frames is
an important concept that is introduced in this section. Dynamic modeling leads to a
compound Poisson process and, more generally, a Lévy process. We begin by recalling the
aggregate loss model of collective risk theory.

2.2 The Aggregate Loss Model
An aggregate loss model random variable has the form 𝑌 = 𝑋1 + ⋯ + 𝑋𝑁 where
𝑁 models claim count (frequency) and 𝑋𝑖 are independent, identically distributed (iid)
severity variables. Aggregate loss models have an implicit time dimension: 𝑁 measures
the number of claims over a set period of time, usually one year. Aggregate loss models
are the basis of the collective risk model and are central to actuarial science.

Expected aggregate losses equal expected claim count times average severity, E[𝑌 ] =
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E[𝑁]E[𝑋]. There is a tricky formula for the variance of 𝑌; here is an easy way to remember
it. If 𝑋 = 𝑥 is constant then 𝑌 = 𝑥𝑁 has variance 𝑥2Var[𝑁]. If 𝑁 = 𝑛 is constant then
𝑋1 + ⋯ + 𝑋𝑛 has variance 𝑛Var(𝑋) because 𝑋𝑖 are independent. The variance formula
must specialize to these two cases and therefore, replacing 𝑛 with E[𝑁] and 𝑥 with E[𝑋],
suggests

Var(𝑌 ) = E[𝑋]2Var(𝑁) + E[𝑁]Var(𝑋)

is a good bet. By conditioning on 𝑁 you can check it is correct.

2.3 Compound Poisson Distributions
A compound Poisson (CP) random variable is an aggregate loss model where 𝑁 has a
Poisson distribution. Let CP(𝜆, 𝑋) = 𝑋1 + ⋯ + 𝑋𝑁 where 𝑁 is a Poisson with mean 𝜆
and 𝑋𝑖 ∼ 𝑋 are iid severities. We shall see that the Tweedie family is a CP where 𝑋𝑖
have a gamma distribution.

By the results in the previous section E[CP(𝜆, 𝑋)] = 𝜆E[𝑋]. Since Var(𝑁) = E[𝑁] for
Poisson 𝑁 and Var(𝑋) = E[𝑋2] − E[𝑋]2, we get

Var(CP(𝜆, 𝑋)) = E[𝑁]E[𝑋2].

CP distributions are a flexible and tractable class of distributions with many nice properties.
They are the building block for almost all models of loss processes that occur at discrete
times.

2.4 Diversifying and Non-Diversifying Insurance Growth
We want to understand the relationship between the variance of losses and the mean
loss for an insurance portfolio as the mean varies, i.e., the variance function. Is risk
diversifying, so larger portfolios have relatively lower risk, or are there dependencies
which lower the effectiveness of diversification? Understanding how diversification scales
has important implications for required capital levels, risk management, pricing, and
the optimal structure of the insurance market. Let’s start by describing two extreme
outcomes using simple CP models. Assume severity 𝑋 is normalized so E[𝑋] = 1 and let
𝑥2 ∶= E[𝑋2].

Consider CP1(𝜇, 𝑋). The variance function is 𝑉 (𝜇) = Var(CP1) = 𝜇𝑥2, which grows
linearly with 𝜇. CP1 models diversifying growth in a line with severity 𝑋. Each risk
is independent: increasing expected loss increases the expected claim count but leaves
severity unchanged. CP1 is a good first approximation to growth for a non-catastrophe
exposed line.

Alternatively, consider CP2(𝜆, (𝜇/𝜆)𝑋) for a fixed expected event count 𝜆. Now, the
variance function is 𝑉 (𝜇) = Var(CP2) = 𝜆(𝜇/𝜆)2𝑥2 = 𝜇2(𝑥2/𝜆) grows quadratically with
𝜇. The distribution of the number of events is fixed, as is the case in a regional hurricane
or earthquake cover. Increasing portfolio volume increases the expected severity for each
event. CP2 is a model for non-diversifying growth in a catastrophe-exposed line. It
is the same as the position size-return stock investment model. Risk, measured by the
coefficient of variation, is constant, equal to √𝑥2/𝜆, independent of volume. This is a
homogeneous growth model.
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We will see in Part IV that the Tweedie family of compound Poisson distributions
interpolates between linear and quadratic variance functions.

A more realistic model adds uncertainty in 𝜇, resulting in a variance function of the form
𝜇(𝑎 + 𝑏𝜇) which is diversifying for small 𝜇 and homogeneous for larger 𝜇.

2.5 The Moment Generating Function of a CP
Many useful properties of CP distributions are easy to see using MGFs. To compute
the MFG of a CP we first to compute the MGF of a Poisson distribution. We need two
facts: the Poisson probability mass function Pr(𝑁 = 𝑛) = 𝑒−𝜆𝜆𝑛/𝑛! and the Taylor series
expansion of the exponential function 𝑒𝑥 = ∑𝑛≥0 𝑥𝑛/𝑛!. Then

𝑀𝑁(𝑡) = E[𝑒𝑡𝑁]

= ∑
𝑛≥0

𝑒𝑡𝑛 𝑒−𝜆𝜆𝑛

𝑛!

= 𝑒−𝜆 ∑
𝑛≥0

(𝑒𝑡𝜆)𝑛

𝑛!

= 𝑒−𝜆𝑒𝜆𝑒𝑡

= exp(𝜆(𝑒𝑡 − 1))

We can now compute the MGF of CP(𝜆, 𝑋) using conditional expectations and the identity
𝑥𝑛 = 𝑒𝑛 log(𝑥):

𝑀CP(𝜆,𝑋)(𝑡) = E[𝑒𝑡CP(𝜆,𝑋)]
= E𝑁[E𝑋[𝑒𝑡(𝑋1+⋯𝑋𝑁) ∣ 𝑁]]
= E𝑁[(E𝑋[𝑒𝑡𝑋])𝑁]
= E𝑁[𝑀𝑋(𝑡)𝑁]
= E𝑁[𝑒𝑁 log(𝑀𝑋(𝑡))]
= 𝑀𝑁(log(𝑀𝑋(𝑡)))
= exp(𝜆(𝑀𝑋(𝑡) − 1)).

A Poisson variable can be regarded as a CP with degenerate severity 𝑋 ≡ 1, which has
MGF 𝑒𝑡. Thus the formula for the MGF of a CP naturally extends the MGF of a Poisson
variable.

An example showing the power of MGF methods comes from the problem of thinning. We
want to count the number of claims excess 𝑥 where ground-up claims have a distribution
CP(𝜆, 𝑋). Take severity to be a Bernoulli random variable 𝐵 with Pr(𝐵 = 1) = Pr(𝑋 >
𝑥) = 𝑝 and Pr(𝐵 = 0) = 1 − 𝑝. 𝐵 indicates if a claim exceeds 𝑥. CP(𝜆, 𝐵) counts
the number of excess claims. It is called a thinning of the original Poisson. It is
relatively easy to see that CP(𝜆, 𝐵) ∼ Poisson(𝜆𝑝) using the conditional probability
formula Pr(CP = 𝑛) = ∑𝑘≥𝑛 Pr(CP = 𝑛 ∣ 𝑁 = 𝑘)Pr(𝑁 = 𝑘) (exercise). But it is very
easy to see the answer using MGFs. By definition 𝑀𝐵(𝑡) = (1 − 𝑝) + 𝑝𝑒𝑡, and therefore

𝑀CP(𝑡) = 𝑀𝑁(𝜆(𝑀𝐵(𝑡) − 1))
= 𝑀𝑁(𝜆((1 − 𝑝 + 𝑝𝑒𝑡 − 1)))
= exp(𝜆𝑝(𝑒𝑡 − 1)).
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The MGF of a mixture is the weighted average of the MGFs of the components. If �̄� is a
𝑝1, 𝑝2, 𝑝1 + 𝑝2 = 1, mixture of 𝑋1 and 𝑋2, so 𝐹�̄�(𝑥) = 𝑝1𝐹1(𝑥) + 𝑝2𝐹2(𝑥), then

𝑀�̄�(𝑡) = ∫ 𝑒𝑡𝑥 (𝑝1𝑓𝑋1
(𝑥) + 𝑝2𝑓𝑋2

(𝑥)) 𝑑𝑥

= 𝑝1 ∫ 𝑒𝑡𝑥𝑓𝑋1
(𝑥) 𝑑𝑥 + 𝑝2 ∫ 𝑒𝑡𝑥𝑓𝑋2

(𝑥) 𝑑𝑥

= 𝑝1𝑀𝑋1
(𝑡) + 𝑝2𝑀𝑋2

(𝑡).

This fact allows us to create discrete approximation CPs and convert between a frequency-
severity and a jump severity distribution view. It is helpful when working with catastrophe
model output.

2.6 The Addition Formula
CP distributions satisfy a simple addition formula

CP(𝜆1, 𝑋1) + CP(𝜆2, 𝑋2) ∼ CP(𝜆, �̄�)

where 𝜆 = 𝜆1 + 𝜆2 and �̄� is a mixture of independent 𝑋1 and 𝑋2 with weights 𝜆1/𝜆 and
𝜆2/𝜆. The addition formula is intuitively obvious: think about simulating claims and
remember two facts. First, that the sum of two Poisson variables is Poisson, and second,
that to simulate from a mixture, you first simulate the mixture component based on the
weights and then simulate the loss from the selected component.

It is easy to demonstrate the the addition formula using MGFs:

𝑀CP(𝜆1,𝑋1)+CP(𝜆2,𝑋2)(𝑡) = 𝑀CP(𝜆1,𝑋1)(𝑡) 𝑀CP(𝜆2,𝑋2)(𝑡)
= exp(𝜆1(𝑀𝑋1

(𝑡) − 1)) exp(𝜆2(𝑀𝑋2
(𝑡) − 1))

= exp(𝜆([(𝜆1/𝜆)𝑀𝑋1
(𝑡) + (𝜆1/𝜆)𝑀𝑋2

(𝑡)] − 1))
= exp(𝜆(𝑀�̄�(𝑡) − 1))
= 𝑀CP(𝜆,�̄�)(𝑡).

The addition formula is the MGF for a mixture in reverse. To sum of multiple CPs you
sum the frequencies and form the frequency-weighted mixture of the severities.

The addition formula is handy when working with catastrophe models. catastrophe models
output a set of events 𝑖, each with a frequency 𝜆𝑖 and a loss amount 𝑥𝑖. They model the
number of occurrences of each event using a Poisson distribution. Aggregate losses from
the event 𝑖 are given by CP(𝜆𝑖, 𝑥𝑖) with a degenerate severity.

It is standard practice to normalize the 𝜆𝑖, dividing by 𝜆 = ∑𝑖 𝜆𝑖, and form the empirical
severity distribution ̂𝐹 (𝑥) = ∑𝑖∶𝑥𝑖≤𝑥 𝜆𝑖/𝜆. ̂𝐹 is the 𝜆𝑖 weighted mixture of the degenerate
distribution 𝑋𝑖 = 𝑥𝑖. By the addition formula, aggregate losses across all events are
CP(𝜆, �̂�) where �̂� has distribution ̂𝐹.

2.7 Lévy Processes and the Jump Size Distribution
The CP model of insurance losses is very compelling. The split into frequency and severity
mirrors the claims process. However, we could take a different approach. We could specify
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properties an insurance loss model must have, and then try to determine all distributions
satisfying those properties. In the process, we might uncover a new way of modeling
losses. The latter approach has been used very successfully to identify risk measures. For
example, coherent risk measures emerge as those satisfying a set of axioms.

As we discussed in the introduction, in a basic insurance model losses occur homogeneously
over time at a fixed expected rate. As a result, losses over a year equal the sum of twelve
identically distributed monthly loss variables, or 52 weekly, or 365 daily variables, etc. If
the random variable 𝑌1 represents losses from a fixed portfolio insured for one year, then
for any 𝑛 there are independent, iid variables 𝑋𝑖, 𝑖 = 1, … , 𝑛 so that 𝑌1 = 𝑋1 + ⋯ + 𝑋𝑛.
Random variables with this divisibility property for every 𝑛 ≥ 1 are called infinitely
divisible (ID). The Poisson, normal, gamma, negative binomial, lognormal, and Pareto
distributions are all ID. This is obvious for the first four from the form of their MGFs.
For example, the Poisson MGF shows

𝑒𝜆(𝑒𝑡−1) = {𝑒 𝜆
𝑛 (𝑒𝑡−1)}𝑛

so the Poisson is a sum of 𝑛 Poisson variables for any 𝑛. The same applies to a CP.
Proving the lognormal or Pareto is ID is much trickier. A distribution with finite support,
such as the uniform or binomial distributions, is not ID. A mixture of ID distributions is
ID if the mixture distribution is ID.

Any infinitely divisible distribution 𝑌 can be embedded into a special type of stochastic
process called a Lévy process so that 𝑌 has the same distribution as 𝑌1. The process 𝑌𝑡
shows how losses occur over time, or as volume increases, or both. 𝑌𝑡 is a Lévy process
if it has independent and identically distributed increments, meaning the distribution
of 𝑌𝑠+𝑡 − 𝑌𝑠 only depends on 𝑡 and is independent of 𝑌𝑠. Lévy processes are Markov
processes: the future is independent of the past given the present. The Lévy processes
representation is built-up by determining the distribution of 𝑌𝜖 for a very small 𝜖 and
then adding up independent copies to determine 𝑌𝑡. The trick is to determine 𝑌𝜖.

Lévy processes are very well understood. See Sato (1999) for a comprehensive reference.
They are the sum of a deterministic drift, a Brownian motion, a compound Poisson process
for large losses, and a process that is a limit of compound Poisson processes for small
losses. All of four components do not need to be present. Insurance applications usually
take 𝑌𝑡 to be a compound Poisson process 𝑌𝑡 = 𝑋1 + ⋯ + 𝑋𝑁(𝑡), where 𝑋𝑖 are iid severity
variables and 𝑁(𝑡) is a Poisson variable with mean proportional to 𝑡.

When a normal, Poisson, gamma, inverse Gaussian, or negative binomial distribution is
embedded into a Lévy processes, all the increments have the same distribution, albeit with
different parameters. This follows from the form of their MGFs, following the Poisson
example above. But it is not required that the increments have the same distribution.
For example, when a lognormal distribution is embedded the divided distributions are not
lognormal—it is well known (and a considerable irritation) that the sum of two lognormals
is not lognormal.

The structure of Lévy processes implies that the MGF of 𝑋𝑡 has the form

E[𝑒𝑠𝑋𝑡 ] = exp(𝑡𝜅(𝑠))

where 𝜅(𝑠) = log E[𝑒𝑠𝑋1 ] is cumulant generating function of 𝑋1. To see this, suppose
𝑡 = 𝑚/𝑛 is rational. Then, by the additive property E[𝑒𝑠𝑋𝑚/𝑛 ] = E[𝑒𝑠𝑋1/𝑛 ]𝑚 and
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E[𝑒𝑠𝑋1 ] = E[𝑒𝑠𝑋1/𝑛 ]𝑛, showing E[𝑒𝑠𝑋1 ]1/𝑛 = E[𝑒𝑠𝑋1/𝑛 ]. Thus E[𝑒𝑠𝑋𝑚/𝑛 ] = E[𝑒𝑠𝑋1 ]𝑚/𝑛. The
result follows for general 𝑡 by continuity. Therefore, the cumulant generating function of
𝑋𝑡 is 𝜅𝑡(𝑠) = 𝑡𝜅(𝑠).

3 Theoretical Framework
dispersion models — DM and EDM — NEF — additive and reproductive

Figure 3 shows the relationship between dispersion models, regular proper DMs (not
discussed), and reproductive and additive Exponential DMs. When the scale index is
known an EDM becomes a NEF.

Figure 3: Dispersion models.

3.1 Dispersion Models
We start by defining some terminology around dispersion models (DMs). The idea is to
generalize the normal with density

𝑝(𝑦; 𝜇, 𝜎2) = 1√
2𝜋𝜎2

exp (− 1
2𝜎2 (𝑦 − 𝜇)2) .

Dispersion models have reproductive and additive parameterizations.

In the reproductive form, the natural parameter 𝜃 and the canonical statistic 𝑇 (𝑋) are
structured so that sums of independent observations preserve the distributional form.
If 𝑋1, … , 𝑋𝑛 are i.i.d. from an exponential family distribution, their sufficient statistic
𝑇𝑛 = ∑𝑛

𝑖=1 𝑇 (𝑋𝑖) follows the same type of distribution with an updated natural parameter.
The logic behind the name “reproductive” is that the sum of i.i.d. observations has the
same distributional form, meaning the distribution is “reproduced” under summation.
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Reproductive: The sum of independent observations retains the same family of distribu-
tions.

With the additive parameterization, the focus is on rewriting the exponential family
form in a way that makes the natural parameter explicitly additive when combining
independent observations. The key idea is that when summing independent variables, the
natural parameters (or a transformation of them) add directly. The name “additive” comes
from the fact that the parameter transformation aligns with addition when combining
independent samples.

Additive: The natural parameters (or their transformation) combine via addition.

3.1.1 Reproductive dispersion models

A reproductive dispersion model with position parameter 𝜇 and dispersion
parameter 𝜎2 is a family with density of the form

𝑝(𝑦; 𝜇, 𝜎2) = 𝑎(𝑦; 𝜎2) exp (− 1
2𝜎2 𝑑(𝑦; 𝜇))

for 𝑦 ∈ 𝐶 ⊂ R and 𝜎2 > 0, where 𝑑 is a deviance function. Deviance functions
generalize (𝑦 − 𝜇)2: 𝑑(𝑦𝜇) > 0 for 𝑦 ≠ 𝜇 and 𝑑(𝑦; 𝑦) = 0, see Section 4.8. The model is
called an exponential dispersion model ED(𝜇, 𝜎2) if the deviance has the form

𝑑(𝑦; 𝜇) = 𝑦𝑓(𝜇) + 𝑔(𝜇) + ℎ(𝑦).

The parameter 𝜇 is called the mean value parameter and 𝜎2 the dispersion parame-
ter.

3.1.2 Natural exponential families

A natural exponential family (NEF) NE(𝜇) is a family of densities of the form

𝑐(𝑦) exp (−1
2

𝑑(𝑦; 𝜇)) .

A reproductive EDM with 𝜎2 known is a NEF. In that case the density is

𝑐1(𝑦) exp (𝑦𝑓1(𝜇) + 𝑔1(𝜇))

for suitable 𝑓1, 𝑔1, subsuming the exp(ℎ(𝑦)) factor and 𝑐(𝑦).

3.1.3 Additive dispersion models

The additive form is
𝑍 = 𝑌

𝜎2 = 𝜆𝑌

where 𝜆 = 1/𝜎 is called an additive exponential dispersion model. This is written
𝑍 ∼ ED∗(𝜃, 𝜆) where 𝜃 = 𝑓(𝜇) and 𝜆 = 1/𝜎2. The parameters 𝜃 is called the canonical
parameter and 𝜆 > 0 the index parameter.
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3.2 Volume and Loss Aggregation with EDMs
The choice of loss or pure premium aggregation determines whether losses are viewed in
total or on a per-policy-per-period (what health actuaries call pppy, per person per year)
averages, leading naturally to two related sets of models.

1. Total Losses using an Additive Model. In many actuarial applications, the
total loss across multiple policies or over an extended period is the primary object
of interest. When losses are aggregated, the natural structure is additive, ED∗(𝜃, 𝜆).
The sum should retain the same distributional form:

∑
𝑖

ED∗(𝜃, 𝜆𝑖) ∼ ED∗ (𝜃, ∑
𝑖

𝜆𝑖) .

The classic example is a compound Poisson (CP) model, where 𝜆𝑖 determine expected
claim count of different units and 𝜃 determines the per claim severity distribution.
CP models with the same severity add by adding expected frequencies, 𝜆𝑖.

2. Average Loss per Period using a Reproductive Model. In other settings,
particularly in experience rating or loss ratio analysis, the focus shifts to per-
unit per-period loss measures, ED∗(𝜃, 𝜆)/𝜆 calling for the reproductive structure,
𝑌 = ED(𝜇, 𝜎2). The mean 𝜇 refers to the per-unit-per-period expected loss. The
statistical properties of 𝑌 vary with context. If the unit is all losses from Mega
Corp. Inc., over a year then 𝜇 could be very large and have a tight distribution (𝜇
large, 𝜎2 small). Conversely, for My Umbrella Policy with a $25M limit above $1M
primary policies, losses per year have a very low mean but broad distribution (𝜇
small, 𝜎2 large). However, in both cases actuaries know that the average becomes less
dispersed as more units (measured in like policy-years) are combined. Pure premiums
and loss ratios combine using a weighted average approach. If the distribution for
one policy-year has parameters 𝜇 and 𝜎2 and distribution ED(𝜇, 𝜎2), then the per
policy-per year average of 𝑛𝑖 policy-years of identical exposures has distribution
ED(𝜇, 𝜎2/𝑛𝑖) and this is an assumption! These should combine

1
𝑛

∑
𝑖

ED (𝜇, 𝜎2

𝑛𝑖
) ∼ ED (𝜇, 𝜎2

𝑛
)

where 𝑛 = ∑𝑖 𝑛𝑖 is the total exposure modeled. The classic example here is adding
normals derived as averages from different sample sizes, where the variance of the
average from 𝑛𝑖 observations equals 𝜎2/𝑛𝑖.

Exponential dispersion models support both views—total and per-unit losses—through
its underlying structural properties.

3.3 Exponential Dispersion Models
An exponential dispersion model (EDM) is a collection of NEFs whose generator
densities form a Lévy process. There are two kinds of EDM.

Let 𝑍𝜈 be a Lévy process with density 𝑐(𝑦; 𝜈). The variable 𝜈 is called the index
parameter. 𝜈 is used in place of 𝑡 to be agnostic: it can represent expected loss volume
or time or a combination. In the finite variance case, the distribution of 𝑍𝜈 becomes less
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dispersed as 𝜈 increases. Therefore it is natural to define 1/𝜈 as a dispersion parameter.
For Brownian motion the dispersion parameter is usually denoted 𝜎2. Throughout
𝜎2 = 1/𝜈 and the two notations are used inter-changeably. 𝑍𝜈 and 𝜈𝑍1 have the same
mean, but the former has varying coefficient of variation CV(𝑍1)/

√
𝜈 and the latter a

constant CV. 𝑍𝜈 is more (𝜈 < 1) or less (𝜈 > 1) dispersed than 𝑍1. The difference between
𝑍𝜈 and 𝜈𝑍1 are illustrated in the lower two panels of Figure 15.

The first kind of EDM is an additive exponential dispersion model. It comprises the
NEFs associated with the generator distribution 𝑍𝜈. It has generator density 𝑐(𝑧; 𝜈) and
cumulant generator 𝜅𝜈(𝜃) = 𝜈 𝜅(𝜃). Its members are all exponential tilts of 𝑐(𝑧; 𝜈) as 𝜈
varies. A representative distribution 𝑍 ∼ DM∗(𝜃, 𝜈) has density

𝑐(𝑧; 𝜈)𝑒𝜃𝑧−𝜈 𝜅(𝜃).

As 𝜈 increases, the mean of the generator distribution increases and it becomes less
dispersed. The same is true for 𝑍. The cumulant generating function of 𝑍 is

𝐾(𝑡; 𝜃, 𝜈) = 𝜈(𝜅(𝑡 + 𝜃) − 𝜅(𝜃)).

If 𝑍𝑖 ∼ DM∗(𝜃, 𝜈𝑖) and 𝑍 = ∑ 𝑍𝑖, then the cumulant generating function for 𝑍 is
(∑𝑖 𝜈𝑖)(𝜅(𝑡+𝜃)−𝜅(𝜃)) showing 𝑍 has distribution DM∗(𝜃, ∑𝑖 𝜈𝑖) within the same family,
explaining why the family is called additive. Additive exponential dispersions are used to
model total losses.

The second kind of EDM is a reproductive exponential dispersion model. It comprises
the NEFs associated with the generator distribution of 𝑌𝜈 = 𝑍𝜈/𝜈. 𝑌𝜈 has a mean
independent of 𝜈, but this independence is illusionary since the mean can be adjusted
by re-scaling 𝜈. In the finite variance case, 𝑌𝜈 has decreasing CV as 𝜈 increases. The
densities of 𝑌 and 𝑍 are related by 𝑓𝑌(𝑦) = 𝜈𝑓𝑍(𝜈𝑦). Hence a representative has density

𝑓𝑌(𝑦) = 𝜈𝑐(𝜈𝑦, 𝜈)𝑒𝜈(𝜃𝑦−𝜅(𝜃)).

The cumulant generating function of 𝑌 is

𝐾(𝑡; 𝜃, 𝜈) = 𝜈(𝜅(𝑡/𝜈 + 𝜃) − 𝜅(𝜃)).

To end this section, let’s work out the impact of tiling on the Lévy measure 𝐽. In the last
section, we saw that the cumulant generator of 𝑍 has the form

𝜅(𝜃) = 𝑎𝜃 + ∫
1

0
(𝑒𝜃𝑥 − 1 − 𝜃𝑥) 𝑗(𝑥) 𝑑𝑥 + ∫

∞

1
(𝑒𝜃𝑥 − 1) 𝑗(𝑥) 𝑑𝑥

where 𝑎 is a location (drift) parameter. Rather than split the integral in two, write it as

∫
∞

0
(𝑒𝜃𝑥 − 1 − 𝜃𝑥1(0,1)(𝑥)) 𝑗(𝑥) 𝑑𝑥.

where 1(0,1) is the indicator function on (0, 1). The 𝜃-tilt of 𝑍 has cumulant generating
function

𝐾𝜃(𝑠) = 𝜅(𝑠 + 𝜃) − 𝜅(𝜃)

= 𝑎𝑠 + ∫
∞

0
(𝑒(𝑠+𝜃)𝑥 − 𝑒𝜃𝑥 − 𝑠𝑥1(0,1)(𝑥)) 𝑗(𝑥) 𝑑𝑥

= 𝑎𝑠 + ∫
∞

0
(𝑒𝑠𝑥 − 1 − 𝑠𝑒−𝜃𝑥𝑥1(0,1)(𝑥)) 𝑒𝜃𝑥𝑗(𝑥) 𝑑𝑥.
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The factor 𝑒−𝜃𝑥 in the compensation term can be combined with 1(0,1), resulting in an
adjustment to the drift parameter. Thus the Lévy distribution of the tilted distribution is
𝑒𝜃𝑥𝑗(𝑥).

3.4 Connection to GLM modeling
We’re thinking the underlying units are characterized by a single size of loss distribution
that is similar to a severity curve. DETAILS
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4 The NEF Nonet
carrier or generating density — exponential tilting — cumulant generator — cumulant
generating function — mean value mapping — variance function — log likelihood — unit
deviance — density from deviance — Lévy distribution families

Material from The NEF Circle/Nonet.

This section describes the NEF Nonet which gives nine ways to define a NEF Section 3.1.
The EDM index parameter is assumed known in a NEF.

Cumulant
generator

Generating density

Exponential tilt
density

Cumulant gener-
ating function

Mean value
mapping

Variance function

Log likelihood
for mean

Unit
deviance

Density from
deviance

Figure 4: Nine different ways of defining a NEF.

4.1 The Generating Density
A generator or carrier is a real valued function 𝑐(𝑦) ≥ 0. (The argument is 𝑦 for historical
reasons, where 𝑦 represented as response.) If 𝑐 is a probability density, ∫ 𝑐(𝑦)𝑑𝑦 = 1, then
it is called a generating density. However, ∫ 𝑐(𝑦)𝑑𝑦 ≠ 1 and even ∫ 𝑐(𝑦)𝑑𝑦 = ∞ are
allowed. The generating density sits at the top of the circle, reflecting its fundamental
importance.

How can we create a probability density from 𝑐? It must be normalized to have integral
1. Normalization is not possible when ∫ 𝑐(𝑦)𝑑𝑦 = ∞. However, it will be possible to
normalize the adjusted generator 𝑐(𝑦)𝑒𝜃𝑦 when its integral is finite. To that end, define

Θ = {𝜃 ∣ ∫ 𝑐(𝑦)𝑒𝜃𝑦𝑑𝑦 < ∞}.

The Natural Exponential Family generated by 𝑐 is the set of probability densities

NEF(𝑐) = { 𝑐(𝑦)𝑒𝜃𝑦

∫ 𝑐(𝑧)𝑒𝜃𝑧𝑑𝑧
∣ 𝜃 ∈ Θ}
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proportional to 𝑐(𝑦)𝑒𝜃𝑦. 𝜃 is called the natural or canonical parameter and Θ the
natural parameter space. Naming the normalizing constant 𝑘(𝜃) = (∫ 𝑐(𝑦)𝑒𝜃𝑦𝑑𝑦)−1

shows all densities in NEF(𝑐) have a factorization

𝑐(𝑦)𝑘(𝜃)𝑒𝜃𝑦,

as required by the original definition of an exponential family.

There are two technical requirements for a NEF.

First, a distribution in a NEF cannot be degenerate, i.e., it cannot take only one value.
Excluding degenerate distributions ensures that the variance of every member of a NEF
is strictly positive, which will be very important.

Second, the natural parameter space Θ must contain more than one point. If 𝑐(𝑦) =
1
𝜋

1
1 + 𝑦2 is the density of a Cauchy, then Θ = {0} because 𝑐 has a fat left and right tails.

By assumption, the Cauchy density does not generate a NEF.

The same NEF is generated by any element of NEF(𝑐), although the set Θ varies with
the generator chosen. Therefore, we can assume that 𝑐 is a probability density. When 𝑐 is
a density ∫ 𝑐 = 1, 𝑘(0) = log(1) = 0 and 0 ∈ Θ.

Θ is an interval because 𝜅 is a convex function, Section 4.2. If 𝑐 is supported on the
non-negative reals then (−∞, 0) ⊂ Θ. If Θ is open then the NEF if called regular. In
general, Θ might contain an endpoint.

All densities in a NEF have the same support, defined by {𝑦 ∣ 𝑐(𝑦) ≠ 0} because 𝑒𝜃𝑦 > 0
and 𝑘(𝜃) > 0 on Θ.

Many common distributions belong to a NEF, including the normal, Poisson and gamma.
The Cauchy distribution does not. The set of uniform distributions on [0, 𝑥] as 𝑥 varies is
not a NEF because the elements do not all have the same support.

4.2 Cumulant Generator
Instead of the generator we can work from the cumulant generator or log partition
function defined as

𝜅(𝜃) = log ∫ 𝑒𝜃𝑦𝑐(𝑦) 𝑑𝑦,

for 𝜃 ∈ Θ. The cumulant generator is the log Laplace transform of 𝑐 at −𝜃, and so there
is a one-to-one mapping between generators and cumulant generators. The cumulant
generator sits in the center of the circle because it is directly linked to several other
components. In terms of 𝜅, a member of NEF(𝑐) has density

𝑐(𝑦)𝑒𝜃𝑦−𝜅(𝜃).

The cumulant generator is a convex function, and strictly convex if 𝑐 is not degenerate.
Convexity follows from Hölder’s inequality. Let 𝜃 = 𝑠𝜃1 + (1 − 𝑠)𝜃2. Then

∫ 𝑒𝜃𝑦𝑐(𝑦)𝑑𝑦 = ∫(𝑒𝜃1𝑦)𝑠(𝑒𝜃2𝑦)1−𝑠𝑐(𝑦)𝑑𝑦

≤ (∫ 𝑒𝜃1𝑦𝑐(𝑦)𝑑𝑦)
𝑠

(∫ 𝑒𝜃2𝑦𝑐(𝑦)𝑑𝑦)
1−𝑠

.
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Now take logs. As a result Θ is an interval. Hölder’s inequality is an equality iff 𝑒𝜃1𝑦

is proportional to 𝑒𝜃2𝑦, which implies 𝜃1 = 𝜃2. Thus provided Θ is not degenerate 𝜅 is
strictly convex.

4.3 Exponential Tilting
The exponential tilt of 𝑌 with parameter 𝜃 is a random variable with density

𝑓(𝑦; 𝜃) = 𝑐(𝑦)𝑒𝜃𝑦−𝜅(𝜃).

It is denoted 𝑌𝜃. The exponential tilt is defined for all 𝜃 ∈ Θ. Tilting, as its name implies,
alters the mean and tail thickness of 𝑐. For example, when 𝜃 < 0 multiplying 𝑐(𝑦) by
𝑒𝜃𝑦, decreases the probability of positive outcomes, increases that of negative ones, and
therefore lowers the mean.

A NEF consists of all valid exponential tilts of a generator density 𝑐, and all distributions
in a NEF family are exponential tilts of one another. They are parameterized by 𝜃. We
have seen they all have the same support, since 𝑒−𝜅(𝜃) > 0 for 𝜃 ∈ Θ. Therefore they are
equivalent measures. In finance, equivalent measures are used to model different views of
probabilities and to determine no-arbitrage prices.

An exponential tilt is also known as an Esscher transform.

Exercise: show that all Poisson distributions are exponential tilts of one another as are
all normal distributions with standard deviation 1. The tilt directly adjusts the mean.
The cumulant generator of a standard normal is 𝜃2/2 and for a Poisson(𝜆) it is 𝜆(𝑒𝜃 − 1).
�

4.4 Cumulant Generating Functions
The moment generating function (MGF) of a random variable 𝑌 is1

𝑀(𝑡) = E[𝑒𝑡𝑌] = ∫ 𝑒𝑡𝑦𝑓(𝑦) 𝑑𝑦.

The MGF contains the same information about 𝑌 as the distribution function, it is just
an alternative representation. Think of distributions and MGFs as the random variable
analog of Cartesian and polar coordinates for points in the plane.

The moment generating function owes its name to the fact that

E[𝑌 𝑛] = 𝑑𝑛

𝑑𝑡𝑛 𝑀𝑌(𝑡)∣
𝑡=0

,

provided E[𝑌 𝑛] exists. That is, the derivatives of 𝑀 evaluated at 𝑡 = 0 give the non-central
moments of 𝑌. The moment relationship follows by differentiating E[𝑒𝑡𝑌] = ∑ E[(𝑡𝑌 )𝑛/𝑛!]
through the expectation integral.

1Strictly, we should use the characteristic function, defined by 𝜙(𝑠) = E[𝑒𝑖𝑠𝑌] where 𝑖 =
√

−1.
The characteristic function exists for all 𝑌 and all real 𝑠 because |𝑒𝑖𝑠𝑦| = 1, whereas for certain thick
tailed 𝑌 the MGF does not always exist. However, imaginary numbers can be intimidating and often we
can get by with the MGF. The cognoscenti should replace MGF with CF and sprinkle with 𝑖.
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The MGF of a sum of independent variables is the product of their MGFs

𝑀𝑋+𝑌(𝑡) = E[𝑒𝑡(𝑋+𝑌 )]
= E[𝑒𝑡𝑋𝑒𝑡𝑌]
= E[𝑒𝑡𝑋]E[𝑒𝑡𝑌]
= 𝑀𝑋(𝑡)𝑀𝑌(𝑡).

Independence is used to equate the expectation of the product and the product of the
expectations. Similarly, the MGF of a sum 𝑋1 + ⋯ + 𝑋𝑛 of iid variables is 𝑀𝑋(𝑡)𝑛.

The cumulant generating function is the log of the MGF, 𝐾(𝑡) = log 𝑀(𝑡). The 𝑛th
cumulant is defined as

𝑑𝑛

𝑑𝑡𝑛 𝐾(𝑡)∣
𝑡=0

.

Cumulants are additive for independent variables because 𝐾𝑋+𝑌 = log 𝑀𝑋+𝑌 =
log(𝑀𝑋𝑀𝑌) = log(𝑀𝑋) + log(𝑀𝑌) = 𝐾𝑋 + 𝐾𝑌. Higher cumulants are translation
invariant because 𝐾𝑘+𝑋(𝑡) = 𝑘𝑡 + 𝐾𝑋(𝑡). The first three cumulants are the mean, the
variance and the third central moment, but thereafter they differ from both central and
non-central moments.

Exercise: show that all cumulants of a Poisson distribution equal its mean. �

The MGF of the exponential tilt 𝑌𝜃 in NEF(𝑐) is

𝑀(𝑡; 𝜃) = E[𝑒𝑡𝑌𝜃 ]

= ∫ 𝑒𝑡𝑦 𝑐(𝑦)𝑒𝜃𝑦−𝜅(𝜃) 𝑑𝑦

= 𝑒𝜅(𝜃+𝑡)−𝜅(𝜃).

Therefore the cumulant generating function of 𝑌𝜃 is simply

𝐾(𝑡; 𝜃) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃).

4.5 The Mean Value Mapping
The mean of 𝑌𝜃 is the first cumulant, computed by differentiating 𝐾(𝑡; 𝜃) with respect to
𝑡 and setting 𝑡 = 0. The second cumulant, the variance, is the second derivative. Thus

{
E[𝑌𝜃] = 𝐾′(0; 𝜃) = 𝜅′(𝜃) and
Var(𝑌𝜃) = 𝜅″(𝜃).

The mean value mapping (MVM) function is 𝜏(𝜃) = 𝜅′(𝜃). Since a NEF distribution is
non-degenerate, 𝜏 ′(𝜃) = 𝜅″(𝜃) = Var(𝑌𝜃) > 0 showing again that 𝜅 is convex and that 𝜏
is monotonically increasing and therefore invertible. Thus 𝜃 = 𝜏−1(𝜇) is well defined. The
function 𝜏−1 is called the canonical link in a GLM. The link function, usually denoted
𝑔, bridges from the mean domain to the linear modeling domain.

The mean domain is Ω ∶= 𝜏(int Θ), the set of possible means. It is another interval. The
NEF is called regular if Θ is open, and then the mean parameterization will return the
whole family. But if Θ contains an endpoint the mean domain may need to be extended
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to include ±∞. The family is called steep if the mean domain equals the interior of the
convex hull of the support. Regular implies steep. A NEF is steep iff E[𝑋𝜃] = ∞ for all
𝜃 ∈ Θ ∖ int Θ.

When we model, the mean is the focus of attention. Using 𝜏 we can parameterize NEF(𝑐)
by the mean, rather than 𝜃, which is usually more convenient.

4.6 The Variance Function
The variance function determines the relationship between the mean and variance of
distributions in a NEF. It sits at the bottom of the circle, befitting its foundational role.
In many cases the modeler will have prior knowledge of the form of the variance function.
Part I explains how NEFs allow knowledge about 𝑉 to be incorporated without adding
any other assumptions.

Using the MVM we can express the variance of 𝑌𝜃 in terms of its mean. Define the
variance function by

𝑉 (𝜇) = Var(𝑌𝜏−1(𝜇))
= 𝜏 ′(𝜏−1(𝜇))

= 1
(𝜏−1)′(𝜇)

.

The last expression follows from differentiating 𝜏(𝜏−1(𝜇)) = 𝜇 with respect to 𝜇 using the
chain rule. Integrating, we can recover 𝜃 from 𝑉

𝜃 = 𝜃(𝜇)
= 𝜏−1(𝜇)

= ∫
𝜇

𝜇0

(𝜏−1)′(𝑚)𝑑𝑚

= ∫
𝜇

𝜇0

𝑑𝑚
𝑉 (𝑚)

.

We can phrase this relationship as

𝜕𝜃
𝜕𝜇

= 1
𝑉 (𝜇)

meaning 𝜃 is a primitive or anti-derivative of 1/𝑉 (𝜇). Similarly,

𝜕𝜅
𝜕𝜇

= 𝜅′(𝜃(𝜇))
𝑉 (𝜇)

= 𝜇
𝑉 (𝜇)

,

meaning 𝜅(𝜃(𝜇)) is a primitive of 𝜇/𝑉 (𝜇).

𝑉 and Θ uniquely characterize a NEF. It is necessary to specify Θ, for example, to
distinguish a gamma family from its negative. (𝑉 , Θ) do not characterize a family within
all distributions. For example, the family 𝑘𝑋 for 𝑋 with E[𝑋] = Var(𝑋) = 1 has variance
proportional to the square of the mean, for any 𝑋. But the gamma is the only NEF family
of distributions with square variance function.
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4.7 Log Likelihood for the Mean
The NEF density factorization implies the sample mean is a sufficient statistic for 𝜃. The
log likelihood for 𝜃 is 𝑙(𝑦; 𝜃) = log(𝑐(𝑦)) + 𝑦𝜃 − 𝜅(𝜃). Only the terms of the log likelihood
involving 𝜃 are relevant for inference about the mean. The portion 𝑦𝜃 − 𝜅(𝜃) is often
called the quasi-likelihood.

Differentiating 𝑙 respect to 𝜃 and setting equal to zero shows the maximum likelihood
estimator (MLE) of 𝜃 given 𝑦 solves the score equation 𝑦 − 𝜅′(𝜃) = 0. Given a sample of
independent observations 𝑦1, … , 𝑦𝑛, the MLE solves ̄𝑦 − 𝜅(𝜃) = 0, where ̄𝑦 is the sample
mean.

Using the mean parameterization

𝑓(𝑦; 𝜇) = 𝑐(𝑦)𝑒𝑦𝜏−1(𝜇)−𝜅(𝜏−1(𝜇))

the log likelihood of 𝜇 is

𝑙(𝑦; 𝜇) = log(𝑐(𝑦)) + 𝑦𝜏−1(𝜇) − 𝜅(𝜏−1(𝜇)).

Differentiating with respect to 𝜇, shows the maximum likelihood value occurs when

𝜕𝑙
𝜕𝜇

= 𝜕𝑙
𝜕𝜃

𝜕𝜃
𝜕𝜇

= {𝑦 − 𝜅′(𝜏−1(𝜇))} 1
𝑉 (𝜇)

= 𝑦 − 𝜇
𝑉 (𝜇)

= 0

since 𝜅′(𝜏−1(𝜇)) = 𝜏(𝜏−1(𝜇)) = 𝜇. Thus the most likely tilt given 𝑦 has parameter 𝜃
determined so that E[𝑌𝜃] = 𝑦. Recall, 𝜕𝑙/𝜕𝜇 is called the score function.

In a NEF, the maximum likelihood estimator of the canonical parameter is unbiased.
Given a sample from a uniform [0, 𝑥] distribution, the maximum likelihood estimator for
𝑥 is the maximum of a sample, but it is biased low. The uniform family is not a NEF.

4.8 Unit Deviance
A statistical unit is an observation and a deviance is a measure of fit that generalizes the
squared difference. A unit deviance is a measure of fit for a single observation.

Given an observation 𝑦 and an estimate (fitted value) 𝜇, a unit deviance measures of
how much we care about the absolute size of the residual 𝑦 − 𝜇. Deviance is a function
𝑑(𝑦; 𝜇) with the similar properties to (𝑦 − 𝜇)2:

1. 𝑑(𝑦; 𝑦) = 0 and
2. 𝑑(𝑦; 𝜇) > 0 if 𝑦 ≠ 𝜇.

If 𝑑 is twice continuously differentiable in both arguments it is called a regular deviance.
𝑑(𝑦; 𝜇) = |𝑦 − 𝜇| is an example of a deviance that is not regular.
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We can make a unit deviance from a likelihood function by defining

𝑑(𝑦; 𝜇) = 2(sup
𝜇∈Ω

𝑙(𝑦; 𝜇) − 𝑙(𝑦; 𝜇))

= 2(𝑙(𝑦; 𝑦) − 𝑙(𝑦; 𝜇)),

provided 𝑦 ∈ Ω. This is where we want steepness. It is also where we run into problems
with Poisson modeling since 𝑦 = 0 is a legitimate outcome but not a legitimate mean
value. For a steep family we know the only such values occur on the boundary of the
support, generally at 0. The factor 2 is included to match squared differences. 𝑙(𝑦; 𝑦) is
the likelihood of a saturated model, with one parameter for each observation; it is the best
a distribution within the NEF can achieve. 𝑑 is a relative measure of likelihood, compared
to the best achievable. It obviously satisfies the first condition to be a deviance. It satisfies
the second because 𝜏 is strictly monotone (again, using the fact NEF distributions are
non-degenerate and have positive variance). Finally, the nuisance term log(𝑐(𝑦)) in 𝑙
disappears in 𝑑 because it is independent of 𝜃.

We can construct 𝑑 directly from the variance function. Since
𝜕𝑑
𝜕𝜇

= −2 𝜕𝑙
𝜕𝜇

= −2𝑦 − 𝜇
𝑉 (𝜇)

it follows that
𝑑(𝑦; 𝜇) = 2 ∫

𝑦

𝜇

𝑦 − 𝑡
𝑉 (𝑡)

𝑑𝑡.

The limits ensure 𝑑(𝑦; 𝑦) = 0 and that 𝑑 has the desired partial derivative wrt 𝜇. The
deviance is the average of how much we care about the difference between 𝑦 and the fitted
value, between 𝑦 and 𝜇. The variance function in the denominator allows the degree of
care to vary with the fitted value.

Example. When 𝑑(𝑦; 𝜇) = (𝑦 − 𝜇)2, 𝜕𝑑/𝜕𝜇 = −2(𝑦 − 𝜇) and hence 𝑉 (𝜇) = 1. �

We can make a deviance function from a single-variable function 𝑑∗ via 𝑑(𝑦; 𝜇) = 𝑑∗(𝑦−𝜇)
provided 𝑑∗(0) = 0 and 𝑑∗(𝑥) ≠ 0 for 𝑥 ≠ 0. 𝑑∗(𝑥) = 𝑥2 shows square distance has this
form. We can then distinguish scale vs. dispersion or shape via

𝑑 (𝑦 − 𝜇
𝜎

) vs. 𝑑(𝑦 − 𝜇)
𝜎2 .

Scale and shape are the same in a normal-square error model. Part III shows they are
different for other distributions such as the gamma or inverse Gaussian. Densities with
different shape cannot be shifted and scaled to one-another.

4.9 Density From Deviance
Finally, we can write a NEF density in terms of the deviance rather than as an exponential
tilt. This view further draws out connections with the normal. Starting with the tilt
density, and parameterizing by the mean, we get

𝑓(𝑦; 𝜏−1(𝜇)) = 𝑐(𝑦)𝑒𝑦𝜏−1(𝜇)−𝜅(𝜏−1(𝜇))

= 𝑒𝑙(𝑦;𝜇)

= 𝑒−𝑑(𝑦;𝜇)/2+𝑙(𝑦;𝑦)

= 𝑐∗(𝑦)𝑒−𝑑(𝑦;𝜇)/2
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where 𝑐∗(𝑦) ∶= 𝑒𝑙(𝑦;𝑦) = 𝑐(𝑦)𝑒𝑦𝜏−1(𝑦)−𝜅(𝜏−1(𝑦)).

Although it is easy to compute the deviance from 𝑉, it is not necessarily easy to compute
𝑐∗. It can be hard (or impossible) to identify a closed form expression for the density of
a NEF member in terms of elementary functions. This will be the case for the Tweedie
distribution.

4.10 Completing the NEF Nonet

κ(θ) =

∫ µ

µ0

mdm

V (m)

Cumulant generator
κ(θ) = log

∫
eθyc(y)dy,

θ canonical parameter
Θ = {θ | κ(θ) < ∞}
NEF regular if Θ open

Generating density
ν(dy) = c(y)dy,

not necessarily finite

Exponential tilt, Xθ

density f(y; θ) = c(y)eθy−κ(θ)

support S, C = conv(S)

Cumulant generating function
Kθ(t) = κ(t + θ) − κ(θ)

Mean value mapping
E[Xθ] = κ′(θ) = τ(θ) = µ
mean domain Ω = τ(Θ̊)
NEF steep if Ω = C̊

Variance function
Var(Xθ) = V (µ) = κ′′(θ) =
τ ′(τ−1(µ) = 1/(τ−1)′(µ)

Log likelihood for µ
l(y;µ) = yτ−1(µ) − κ(τ−1(µ))

∂l

∂µ
=

y − µ

V (µ)

Unit deviance, for y ∈ Ω
d(y;µ) = 2(l(y; y) − l(y;µ))

= 2

∫ y

µ

y − t

V (t)
dt ≥ 0

Density from deviance
f(y;µ) = c∗(y)e−d(y;µ)/2

c∗(y) = c(y)el(y;y)

τ−1(µ) =

∫ µ

µ0

dm

V (m)

Figure 5: Relationships between actors for a NEF defined by the generating density 𝑐.
If the NEF is steep (e.g., if it is regular) then the condition 𝑦 ∈ Ω in the unit deviance
can be dropped. If the NEF is not steep then the 𝑙(𝑦; 𝑦) may not be defined and must
be replaced with sup𝜃∈Θ 𝑦𝜃 − 𝜅(𝜃) in the unit deviance. conv(𝑆) denotes the smallest
convex set (i.e., interval) containing 𝑆. For the Poisson 𝑆 = {0, 1, 2, … } and 𝐶 = [0, ∞).
Θ̊ denotes the interior of Θ.

Figure 5 summarizes the terms we have defined and their relationships. Now, let’s use
the formulas to work out the details for two examples: the gamma and the
general Tweedie Power Variance Family (PVF). Completed nonets are shown
below for the normal Figure 6, Poisson Figure 7, gamma Figure 8, inverse
Gaussian Figure 9, and (anticipating a little), the Tweedie PVF Figure 10.

This section presents an algorithm to compute each element of the NEF Circle from a
variance function, as well as a less formulaic approach starting with the generator density.
The formal approach is described in Jørgensen (1997) and Letac (2015).

4.10.1 Starting From the Variance Function.

The variance function 𝑉 for a NEF variable 𝑌 satisfies

Var(𝑌 ) = 𝑉 (E[𝑌 ]).
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It is independent of the parameterization used for 𝑌 because it only expresses how the
variance behaves as a function of the mean. The mean is denoted 𝜇. There is a one-to-
one relationship between values of the canonical parameter 𝜃 and values of 𝜇 given by
𝜏(𝜃) ∶= 𝜅′(𝜃) = 𝜇. Thus we can consider the family parameterized by 𝜃 or 𝜇. To complete
the NEF Circle starting from 𝑉:

1. Integrate (𝜏−1)′(𝜇) = 1/𝑉 (𝜇) to determine the canonical parameter 𝜃 = 𝜏−1(𝜇) as
a primitive of 1/𝑉 (𝜇)

𝜃(𝜇) = 𝜏−1(𝜇)

= ∫(𝜏−1)′(𝜇) 𝑑𝜇

= ∫ 𝑑𝜇
𝑉 (𝜇)

.

2. Rearrange to obtain 𝜇 = 𝜅′(𝜃) as a function of 𝜃.
3. Integrate 𝜅′(𝜃) to determine the cumulant generator 𝜅(𝜃). Change variables 𝜇 =

𝜅′(𝜃), 𝑑𝜇 = 𝜅″(𝜃)𝑑𝜃, to see 𝜅(𝜃) is a primitive of 𝜇/𝑉 (𝜇):

𝜅(𝜃) = ∫ 𝜅′(𝜃) 𝑑𝜃 = ∫ 𝜇
𝑉 (𝜇)

𝑑𝜇.

4. The cumulant generating function is 𝐾𝜃(𝑡) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃).
5. The deviance can be computed directly as

𝑑(𝑦; 𝜇) = 2 ∫
𝑦

𝜇

𝑦 − 𝑚
𝑉 (𝑚)

𝑑𝑚 = 𝑙(𝑦; 𝑦) − 𝑙(𝑦; 𝜇).

Notice that equally

𝑑(𝑦; 𝜇) = 2{𝑦𝜃(𝑦) − 𝜅(𝜃(𝑦)) − (𝑦𝜃(𝜇) − 𝜅(𝜃(𝜇)))}

using the results of Steps 1 and 3. As a result, 𝑙(𝑦; 𝜇) = 𝑦𝜃(𝜇) − 𝜅(𝜃(𝜇)) up to
irrelevant factors.

This algorithm can always be computed numerically. It can run into problems if the
functions in Steps 1 and 3 are not integrable, or in Step 2 if 𝜃 cannot be inverted.

4.10.2 Starting from the Density.

A. Starting with the density or probability mass function, find the factorization

𝑐(𝑦)𝑒𝜃𝑦−𝜅(𝜃).

in terms of the original parameterization.
B. Identify 𝜃 as a function of the original parameters.

Working from the density is less algorithmic, but is easier if the form of the density is
known. Note that you can then confirm 𝑉 (𝜇) = 𝜅″(𝜏−1(𝜇)).

We now present several examples of these techniques.
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κ(θ) =
θ2

2

c(y) =
1√
2π

e−y2/2

f(y; θ) = c(y)eθy−θ2/2

Kθ(t) = θt +
t2

2

κ′(θ) = θ = µ

V (µ) = 1

l(y;µ) = µy − µ2

2

d(y;µ) = (y − µ)2

f(y;µ) =
1√
2π

e−(x−µ)2/2

Figure 6: The normal NEF, with 𝜎2 = 1. The normal distribution has base measure given
by a standard normal. It is the archetype, corresponding to squared distance deviance
and the constant variance function. Scale and shape coincide.

4.11 NEF Nonet for the Gaussian distribution
Let 𝑌 ∼ 𝑁(𝜇, 𝜎2), with density

𝑝(𝑦; 𝜇, 𝜎2) = 1√
2𝜋𝜎2

exp (− 1
2𝜎2 (𝑦 − 𝜇)2)

= 1√
2𝜋𝜎2

exp (− 𝑦2

2𝜎2 ) exp (− 1
𝜎2 {𝑦𝜇 − 1

2
𝜇2})

take 𝜃 = 𝜇 and 𝜆 = 1/𝜎2 to see this is a reproductive EDM with 𝑓(𝜇) = 𝜇, unit cumulant
𝜅(𝜃) = 𝜃2/2. The mean value mapping is 𝜏(𝜃) = 𝜇 and the unit variance if 𝑉 (𝜇) = 1.

The additive form
𝑍 = 𝑌

𝜎2 = 𝜆𝑌

where 𝜆 = 1/𝜎 has
𝑍 ∼ 𝑁(𝜃𝜆, 𝜆)

since the variance of 𝑍 equals 𝜆2𝜎 = 𝜆.

Additive convolution is

𝑁(𝜃𝜆1, 𝜆1) + 𝑁(𝜃𝜆2, 𝜆2) = 𝑁(𝜃(𝜆1 + 𝜆2), 𝜆1 + 𝜆2).

Reproductive convolution, 𝑌𝑖 ∼ 𝑁(𝜇, 𝜎2/𝑤𝑖) and 𝑤 = ∑𝑖 𝑤𝑖, then

1
𝑤

∑
𝐼

𝑤𝑖𝑌𝑖 ∼ 𝑁 (𝜇, 𝜎2

𝑤
)
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4.12 NEF Nonet for the Poisson distribution

κ(θ) = eθ

c(n) =
1

n!
, n = 0, 1, . . .

f(y; θ) =
eθy−eθ

y!

Kθ(t) = eθ(et − 1)

κ′(θ) = eθ,
θ = log(µ)

V (µ) = µ

l(y;µ) = y log(µ) − µ

d(y;µ) =

2

(
y log

(
y

µ

)
− (y − µ)

)

f(n;µ) =
e−µµn

n!

Figure 7: The Poisson NEF. Counting base measure, 𝜅(𝜃) = log ∑𝑛 𝑒𝜃𝑛/𝑛!. The Poisson,
like the normal, has no shape parameter. But because it is defined on the non-negative
integers, scaling changes the support and creates in the over-dispersed Poisson model.

4.13 NEF Nonet for the gamma distribution
Let 𝑌 ∼ Ga(𝜇, 𝛼), with known shape parameter 𝛼. E[𝑌 ] = 𝜇 and Var(𝑌 ) = 𝜇2/𝛼, so 𝛼 is
1/𝐶𝑉 2. The variance function is simply 𝑉 (𝜇) = 𝜇2/𝛼. TODO: TIE TO EARLIER!!

The shape and rate parameters are 𝛼 and 𝛽 = 𝛼/𝜇. The density is

𝛽𝛼

Γ(𝛼)
𝑦𝛼−1𝑒−𝛽𝑦 = 𝛼𝛼

𝜇𝛼Γ(𝛼)
𝑦𝛼−1𝑒−𝑦𝛼/𝜇

Gamma: Starting From the Variance Function.

1. Integrate 1/𝑉 to determine 𝜃
𝜃 = ∫ 𝑑𝜇

𝑉 (𝜇)

= ∫ 𝛼
𝜇2 𝑑𝜇

= −𝛼
𝜇

.

2. Invert, to obtain 𝜇 = 𝜏(𝜃) = −𝛼
𝜃

.
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κ(θ) = − log(−θ)
θ < 0

c(y) = 1

f(y; θ) = (−θ)eθy

Kθ(t) = − log

(
1 +

t

θ

)

κ′(θ) = −1

θ
, θ = − 1

µ

V (µ) = µ2

l(y;µ) = − y

µ
− log(µ)

d(y;µ) = 2

(
y

µ
− log

(
y

µ

)
− 1

)

f(y;µ) = µe−y/µ

Figure 8: The Gamma NEF with shape parameter 1. 𝜏−1(𝜇) = −𝜇−1 and 𝑉 (𝜇) =
1/(𝜏−1)′(𝜇) = 𝜇2. Note 𝜃 > 0 for 𝑦 < 0 is another solution.

3. Integrate 𝜏(𝜃) to determine the cumulant generator

𝜅(𝜃) = ∫ 𝜏(𝜃) 𝑑𝜃

= ∫ −𝛼
𝜃

𝑑𝜃

= −𝛼 log(−𝜃).

Beware: if 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥 then ∫ 𝑓(−𝑥)𝑑𝑥 = − ∫ 𝑓(𝑦)𝑑𝑦 = −𝐹(𝑦) = −𝐹(−𝑥),
substituting 𝑦 = −𝑥.

4. The cumulant generating function is

𝐾𝜃(𝑡) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃)
= −𝛼 {log(−𝜃 − 𝑡) + log(−𝜃)}

= −𝛼 log (1 + 𝑡
𝜃

) .

Exponentiating yields the MGF of the gamma; note 𝜃 < 0.
5. The deviance is

𝑑(𝑦; 𝜇) = 𝛼 {𝑦 − 𝜇
𝜇

− log 𝑦
𝜇

}

and 𝑙(𝑦; 𝜇) = −𝑦/𝜇 − log 𝜇 up to irrelevant factors.
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Gamma: Starting from the Density.

A. Factorizing the probability mass function as

𝑦𝛼−1

Γ(𝛼)
(𝛼

𝜇
)

𝛼
𝑒−𝑦𝛼/𝜇 = 𝑦𝛼−1

Γ(𝛼)
exp (−𝑦𝛼

𝜇
+ 𝛼 log 𝛼

𝜇
)

= 𝑦𝛼−1

Γ(𝛼)
exp (𝑦𝜃 − (−𝛼 log(−𝜃)))

where 𝜃 = −𝛼/𝜇 is the canonical parameter and 𝜅(𝜃) = −𝛼 log(−𝜃)

4.13.1 Relationship with scipy.stats distribution

Start with density given by
𝜓𝜆

Γ(𝜆)
𝑦𝜆 𝑒−𝜓𝑦

𝑦
for positifve 𝜙, 𝜆. Define 𝜇 = 𝜆/𝜓 (the mean) and 𝜎2 = 1/𝜆 (the squared coefficient of
variation), allows writing

𝑝(𝑦; 𝜇, 𝜎2) = 𝑎(𝑦; 𝜎2) exp (− 1
2𝜎2 2 { 𝑦

𝜇
− log 𝑦

𝜇
− 1})

where
𝑎(𝑦; 1/𝜆) = 𝜆𝜆𝑒−𝜆

Γ(𝜆)
1
𝑦

.

This shows that the gamma is an EDM with unit deviance

𝑑(𝑦; 𝜇) = 2 { 𝑦
𝜇

− log 𝑦
𝜇

− 1}

(𝑓(𝜇) = 2/𝜇, 𝑔(𝜇) = log 𝜇, ℎ(𝑦) = − log 𝑦)

The behavior of the [gamma] densities is fairly tyhpical for many dispersion
models. For small values of 𝜎2, the density is clearly unimodal with mode point
near 𝜇. … [T]he case where the dispersion is [so] large that the interpretation
of 𝜇 as “position” becomes blurred, essentially becaue the large value of the
dispersion parametrer squeezes a lot of probability mass down towards the
origin. What we mean by a “large” value of the dispersion paramter here is
thus a value for which the non-normality of the distribution becomes evident.

The exponential (gamma with 𝜆 = 1) is clearly “non-normal”.

𝜇 is the mean and 𝜎2 = 1/𝜆 is the squred CV. The canonical parameter is 𝜃 = −1/𝜇 and
unit cumulant is 𝜅(𝜃) = − log(−𝜃). The reproductive form Ga(𝜇, 𝜎2) has density

𝑝(𝑦; 𝜇, 𝜎2) = 𝜆𝜆

Γ(𝜆)
𝑦𝜆

𝑦
exp (−𝜆 { 𝑦

𝜇
+ log 𝜇})

The gamma satisfies an important scaling identity

𝑐Ga(𝜇, 𝜎2) = Ga(𝑐𝜇, 𝜎2).
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The duality identity 𝑍 = 𝑌 𝜆 gives

Ga∗(𝜃, 𝜆) = Ga (−𝜆
𝜃

, 1
𝜆

)

and the additive density is

𝑝∗(𝑧; 𝜃, 𝜆) = 𝑧𝜆−1

Γ(𝜆)
exp(𝑧𝜃 + 𝜆 log(−𝜃))

= (−𝜃)𝜆

Γ(𝜆)
𝑧𝜆𝑒𝑧𝜃

𝑧
.

4.14 NEF Nonet for the inverse Gaussian distribution

κ(θ) = −
√
−2θ

θ < 0

c(y) =
e−1/(2y)√

2πy3

f(y; θ) = c(y)eθy+(−2θ)1/2

Kθ(t) =

√
−2θ

(
1−

√
1 +

t

θ

)

κ′(θ) = − 1√
−2θ

,

θ = − 1

2µ2

V (µ) = µ3

l(y;µ) = − y

2µ2
+

1

µ

d(y;µ) =
(y − µ)2

µ2y

f(y;µ) =
1√
2πy3

e−(y−µ)/(2µ2y)

Figure 9: The inverse Gaussian NEF with shape parameter 1. 𝜏−1(𝜇) = −1/(2𝜇2) and
𝑉 (𝜇) = 1/(𝜏−1)′(𝜇) = 𝜇3. Compute 𝑑 by integrating (𝑦 − 𝑡)/𝑉 (𝑡).

The reproductive density is

𝑝(𝑦; 𝜃, 𝜆) = √ 𝜆
2𝜋𝑦3 exp (− 𝜆

2𝑦
+ 𝜆(𝜃𝑦 + (−2𝜃)1/2) ,

a reproductive EDM with
𝜅(𝜃) = −

√
−2𝜃

and
𝜏(𝜃) = 𝜇 = 1√

−2𝜃
.

𝜃 = 0 is valid, giving the density

𝑝(𝑦; 0, 𝜆) = √ 𝜆
2𝜋𝑦3 exp (− 𝜆

2𝑦
)
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of a scaled Lévy stable. The deviance is

𝑑(𝑦; 𝜇) = (𝑦 − 𝜇)2

𝜇2𝑦
.
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5 Identifying the Tweedie Power Variance Family
Distributions

aka The NEF Nonet for the Tweedie PVF Family, 𝑝 ≠ 0, 1, 2, 3

identifying TPVF members — hiding in plain sight - aggregation operator — tilting
commutes with aggregation (ASTIN FFT paper)

From Tweedie post

κ(θ) =
α− 1

α

(
θ

α− 1

)α

c(y) no closed form

f(y; θ) = no closed form

Kθ(t) = κ(θ)

[(
1 +

t

θ

)α

− 1

]

κ′(θ) =

(
θ

α− 1

)α−1

θ = (α − 1)µ1/(α−1)

V (µ) = µp

l(y;µ) =
yµ1−p

1− p
+

µ2−p

2− p

d(y;µ) = 2

(
(y+)2−p

(1− p)(2− p)
−

yµ1−p

1− p
+

µ2−p

2− p

)

f(y;µ) = no closed form

Lévy density ∝ x−α−1eθx, α < 2

Figure 10: The NEF circle for the PVF families, 𝑝 ∉ {1, 2}, 𝛼 = (𝑝 − 2)/(𝑝 − 1),
(𝛼 − 1)(𝑝 − 1) = −1. Taking 𝛼 = 2, 𝑝 = 0 produces the normal distribution, 𝛼 = 0, 𝑝 = 2
the gamma, and 𝛼 = −∞, 𝑝 = 1 the Poisson.

5.1 Solving for the Cumulant Generating Function
For any NEF we know 𝜅′(𝜃) = 𝜏(𝜃) = 𝜇 and

𝜅″(𝜃) = 𝜏 ′(𝜏−1(𝜇)) = 1/(𝜏−1)′(𝜇)) = 𝑉 (𝜇),

by the results in Part II. For the power variance family, we can integrate (𝜏−1)′(𝜇) =
1/𝑉 (𝜇) = 𝜇−𝑝 to get

𝜃 = 𝜏−1(𝜇) = 𝜇1−𝑝

1 − 𝑝
,

provided 𝑝 ≠ 1. Rearranging determines

𝜅′(𝜃) = 𝜇 = {(1 − 𝑝)𝜃}
1

1−𝑝 .
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We can integrate this expression for 𝜅′(𝜃) and, for 𝑝 ≠ 2, obtain

𝜅(𝜃) = (1 − 𝑝)
1

1−𝑝 𝜃
2−𝑝
1−𝑝 /2 − 𝑝

1 − 𝑝

= (1 − 𝑝)
2−𝑝
1−𝑝

𝜃
2−𝑝
1−𝑝

2 − 𝑝

= 1
2 − 𝑝

{(1 − 𝑝)𝜃}
2−𝑝
1−𝑝

since 1
1−𝑝 + 1 = 2−𝑝

1−𝑝 . Substituting 𝛼 = 2−𝑝
1−𝑝 , and noting 𝑝 = 𝛼−2

𝛼−1 , 1 − 𝑝 = 1
𝛼−1 , and

1
2−𝑝 = 𝛼−1

𝛼 , yields

𝜅(𝜃) = 𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

.

For reference, the most basic stable distribution with tail parameter 𝛼 has cumulant
generating function −𝛾|𝜃|𝛼 for a scale constant 𝛾, which has the same form.

The two excluded cases, 𝑝 = 1, 2, work out as follows. When 𝑝 = 1, 𝛼 = ∞. The first
integral yields 𝜃 = log(𝜇) and the second 𝜅(𝜃) = 𝑒𝜃, giving a Poisson. And when 𝑝 = 2,
𝛼 = 0. The first integral yields 𝜃 = −𝜇−1 and the second 𝜅(𝜃) = − log(−𝜇), giving a
gamma.

One further case will occur, which in a sense corresponds to 𝑝 = ∞. It turns out the
correct interpretation is 𝑉 (𝜇) = 𝑒𝜇. Then, the first integral yields 𝜃 = −𝑒−𝜇 and the
second 𝜅(𝜃) = 𝜃 − 𝜃 log(−𝜃). This will give an extreme Cauchy distribution.

To summarize: the cumulant generator for the power variance family is given by

𝜅𝑝(𝜃) =

⎧{{{
⎨{{{⎩

𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

𝑝 ≠ 1, 2; 𝛼 = 2−𝑝
1−𝑝

𝑒𝜃 𝑝 = 1; 𝛼 = ∞
− log(−𝜃) 𝑝 = 2; 𝛼 = 0.
𝜃 − 𝜃 log(−𝜃) 𝑝 = ∞; 𝛼 = 1

where the subscript indicates dependence on 𝑝. The normal, 𝛼 = 2, 𝑝 = 0 is a special
case of the first row.

The canonical parameter domain Θ𝑝 is the largest interval real numbers for which 𝜅𝑝(𝜃)
is finite. Therefore

Θ𝑝 =

⎧
{{{
⎨
{{{
⎩

(−∞, ∞) 𝑝 = 0, 𝛼 = 2; 𝑝 = 1, 𝛼 = ∞
[0, ∞) 𝑝 < 0, 1 < 𝛼 < 2; 0 < 𝑝 < 1, 𝛼 > 2
(−∞, 0) 1 < 𝑝 ≤ 2, 𝛼 ≤ 0
(−∞, 0] 2 < 𝑝 < ∞; 0 < 𝛼 < 1
(−∞, 0] 𝑝 = ∞; 𝛼 = 1.

In the last row we allow 𝜃 = 0 because lim𝜃↑0 −𝜃 log(−𝜃) = 0.

In general, a member of the NEF generated by 𝑉 has cumulant generating function
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𝐾𝜃(𝑡) = 𝜅(𝜃 + 𝑡) − 𝜅(𝜃). Assuming 𝑝 ≠ 1, 2 and substituting for 𝜅 produces

𝐾𝜃(𝑡) = 𝛼 − 1
𝛼

{( 𝜃 + 𝑡
𝛼 − 1

)
𝛼

− ( 𝜃
𝛼 − 1

)
𝛼

}

= 𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

{(1 + 𝑡
𝜃

)
𝛼

− 1} .

Which distributions correspond to these cumulant generating functions? We distinguish
the following situations:

1. when 0 ∉ Θ𝑝 we identify 𝐾𝜃, and
2. when 0 ∈ Θ𝑝 we identify 𝐾0(𝑡) = 𝜅(𝑡), with sub-cases:

i. the normal and Poisson, where 0 is in the interior of Θ𝑝 and
ii. the second, fourth and fifth rows where 0 is a boundary point of Θ𝑝. These

NEFs are not regular and 𝜃 = 0 corresponds to a distribution with infinite
mean that is not part of the family2.

Figure 11 provides a handy reference of the relationship between 𝑝 and 𝛼 and the
corresponding distributions. The analysis below is ordered by 𝛼 (along the 𝑥-axis),
starting with 𝛼 = 2, the normal. The line colors show the range of 𝛼 values for extreme
stable (1 < 𝛼 < 2), positive extreme stable (0 < 𝛼 < 1) and Tweedie 𝛼 < 0) families. No
distributions correspond to 0 < 𝑝 < 1, 𝛼 > 2 on the extreme right.

5.2 Identifying Tweedie PVF Distributions
• When 𝛼 = 2 and 𝑝 = 0, then 𝜃 = 0 ∈ Θ𝑝 and

𝐾0(𝑡) = 𝜅(𝑡) = 1
2

𝑡2,

which is the cumulant function for the normal distribution. As expected, 𝑉 (𝜇) = 𝜇0

is constant. This NEF is regular because 0 is an interior point of Θ𝑝.

• When 1 < 𝛼 < 2 and 𝑝 < 0, then 𝜃 = 0 ∈ Θ𝑝 and

𝐾0(𝑡) = 𝜅(𝑡) = 𝛼 − 1
𝛼

( 𝑡
𝛼 − 1

)
𝛼

,

which is an 𝛼-stable distribution with Lévy density |𝑥|−𝛼−1 on 𝑥 < 0. It falls into
the compensated IACP, case 3 group, discussed in Part III, and takes any real value,
positive or negative, despite only having negative jumps. It has a thick left tail and
thin right tail. Its mean is zero, but the variance does not exist. A tilt with 𝑒𝜃,
𝜃 > 0 makes the left tail thinner, the right tail thicker, and increases the mean. The
effect on the right tail is manageable because it is thinner than a normal, Zolotarev
(1986), Carr and Wu (2003). As 𝜃 ↓ 0 the mean decreases to zero and the variance
increases, finally becoming infinite when 𝜃 = 0.

• When 𝛼 = 1 and 𝑝 = ∞, then 𝜃 = 0 ∈ Θ𝑝. Here we interpret 𝑉 to be the exponential
variance function and have seen

𝐾0(𝑡) = 𝜅(𝜃) = 𝜃(1 − log(−𝜃)),
2The Lévy stable 𝛼 = 1/2 distribution vs. inverse Gaussian distributions when 𝑝 = 3 is an example

of the latter behavior.
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Figure 11: The power variance families.
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corresponding to an extreme stable distribution with 𝛼 = 1, Jørgensen (1997) and
Eaton, Morris, and Rubin (1971). The NEF exhibits a kind of super-contagion
between risks, resulting in an exponential increase in variance with the mean. The
distribution is still case 3 and is supported on the whole real line.

• When 0 < 𝛼 < 1 and 𝑝 > 2, then 0 ∈ Ω𝑝 and

𝐾0(𝑡) = 𝜅(𝑡) = −1 − 𝛼
𝛼

(− 𝑡
1 − 𝛼

)
𝛼

,

which is an extreme stable with Lévy distribution 𝑥−𝛼, 𝑥 > 0. The distribution is
very thick tailed and does not have a mean (𝜅(𝜃) is not differentiable at 0 because
it has a cusp). In the case 𝛼 = 1/2 we get the Lévy stable distribution and the
inverse Gaussian NEF.

• When 𝛼 = 0 and 𝑝 = 2, then 0 ∉ Ω𝑝 and we analyze

𝐾𝜃(𝑡) = 𝜅(𝑡 + 𝜃) − 𝜅(𝜃)
= − log(−(𝑡 + 𝜃)) + log(−𝜃)

= log (1 + 𝑡
𝜃

)

= log (1 − 𝑡
−𝜃

)

which is a gamma distribution with rate −𝜃 and shape 1.

• When 𝛼 < 0 and 1 < 𝑝 < 2, then 0 ∉ Ω𝑝 and we analyze

𝐾𝜃(𝑡) = 𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

{(1 + 𝑡
𝜃

)
𝛼

− 1}

for 𝜃 < 0. The value 𝜃/(𝛼−1) is positive and (1−𝑡/(−𝜃))𝛼 is the MGF of a gamma
with shape −𝛼 and rate −𝜃. Thus 𝐾𝜃(𝑡) is the cumulant generating function for a
CP with expected frequency 𝛼−1

𝛼 ( 𝜃
𝛼−1)𝛼 > 0 and gamma severity. Distributions

with 1 < 𝑝 < 2 are called Tweedie distributions. Finally, we have demonstrated
why Tweedie distributions are a compound Poisson with gamma severity!

• When 𝛼 = ∞ and 𝑝 = 1, then 0 is an interior point of Ω𝑝 and the NEF is again
regular, like the normal. Now

𝐾0(𝑡) = 𝜅(𝑡) − 𝜅(0) = 𝑒𝑡 − 1

is the cumulant function for the Poisson distribution.

• Finally, when 𝛼 > 2 and 0 < 𝑝 < 1, there is no corresponding NEF. Arguing by
contradiction, suppose there is a NEF with 𝑉 (𝜇) = 𝜇𝑝, 0 < 𝑝 < 1. Since 𝜃 = 0 ∈ Θ𝑝
the NEF has a generating distribution with variance

𝜅″(0) = ( 𝜃
𝛼 − 1

)
𝛼−2

∣
𝜃=0

= 0.

A distribution with zero variance is degenerate and therefore has a cumulant
generating function 𝑒𝑐𝑡 for some constant 𝑐. But this contradicts the known form
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of 𝜅. Therefore, no such NEF can exist. This result was first proved in Jørgensen
(1987). Considering a possible NEF with variance function in this range reveals it
would be very odd: its variance explodes, relative to the mean, as the mean increases
from zero because 𝑉 is not differentiable at zero. It is hard to conceive how such a
thing would occur, and Jorgensen’s result confirms that it cannot.

We have now covered all the possible values for 𝑝 and 𝛼 and identified all the distributions
in the power variance family. The findings are summarized in Table 2.

We can identify the Lévy measure underlying power variance NEFs as a corollary of this
analysis Vinogradov (2004). Under exponential tilting, a Lévy density 𝑗 transforms into
𝑒𝜃𝑥𝑗(𝑥). Use smoothing function 1[0,1]. Then, FILL IN

𝑒𝜃𝑥(𝑒𝑖𝑡𝑥 − 1 − 𝑖𝑡𝑥)𝑗(𝑥)

From the classification given in the first section, we see that all PVF exponential distribu-
tions except the normal and Poisson have a jump density proportional to

𝑗(𝑥) = 𝑥−𝛼−1𝑒𝜃𝑥 (1)

for 𝛼 < 2 and varying 𝜃. When 𝛼 = 2, the normal case, 𝑗 is interpreted as the Dirac 𝛿0
measure: there are no jumps in a Brownian motion. When 𝛼 = −∞, the Poisson case,
𝑗 is interpreted as 𝛿𝜇 where 𝜃 grows with 𝛼 so that 𝜇 = lim𝛼→−∞(2 − 𝛼)/(−𝜃) is fixed.
This implied tilting normalizes 𝑥−𝛼−1𝑒𝜃𝑥 to have mean 𝜇, see REF TWEEDIE CP.

In a sense, Equation 1 distribution can be regarded as a universal severity distribution.
When 𝛼 ≤ 0, the Tweedie range, then 𝜃 < 0 to ensure 𝑗 is finite. When 𝛼 > 0, 𝜃 = 0 defines
a legitimate, stable distribution. The common jump density binds all PVF distributions
together even though their individual densities are quite different. It should be noted that
there was no a priori reason to expect the power variance function distributions have
power Lévy jump distributions in this way IS THERE??

Figure 10 shows the completed NEF Circle for the PVF for 𝑝 ∉ {0, 1, 2}. The deviance,
log likelihood, and cumulant generator are also correct for 𝑝 = 0, 𝛼 = 2, but the density
obviously becomes the normal distribution density. The Lévy measure is added at the top
to unify the diagram. Series expansions are available for 𝑐 and the density, see Jørgensen
(1997) Section 4.2 or Sato (1999) Section 14.

5.3 Fact 1: MGF of a Poisson
If 𝑁 ∼ Po(𝜆) is Poisson, its MGF is

𝑀𝑁(𝑡) = E[𝑒𝑡𝑁]

= ∑
𝑛≥0

𝑒𝑡𝑛 𝜆𝑛𝑒−𝜆

𝑛!

= 𝑒−𝜆 ∑
𝑛≥0

(𝑒𝑡𝜆)𝑛

𝑛!

= 𝑒−𝜆𝑒𝜆𝑒𝑡

= 𝑒𝜆(𝑒𝑡−1).
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5.4 Fact 2: form of gamma Lévy measure
A shape / rate gamma has density

𝑓(𝑥) = 𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥,

mean 𝛼/𝛽, and variance 𝛼/𝛽2. If 𝛼 is an integer it is the distribution of a sum of 𝛼
independent exponentials with mean 1/𝛽, which gives the waiting time for 𝛼 particles
when 𝛽 particles are expected per unit time with a Poisson distribution. Obviously, the
waiting time for one particle has mean 1/𝛽. The ch f is

𝑓(𝑡) = (1 − 𝑡
𝛽

)
−𝛼

which shows that gammas with the same rate form an additive family.

The Lévy measure of the gamma has density

𝑗(𝑥) = 𝛼𝑒−𝛽𝑥

𝑥

on (0, ∞), which has the correct expectation

∫
∞

0
𝛼𝑒−𝛽𝑥 𝑑𝑥 = 𝛼

𝛽
.

The infinite activity compound Poisson has log ch f given by

∫
∞

0
(𝑒𝑡𝑥 − 1)𝑗(𝑥)𝑑𝑥 = 𝛼 ∫

∞

0
(𝑒𝑡𝑥 − 1)𝑒−𝛽𝑥

𝑥
𝑑𝑥

That this equals the log ch f of the gamma follows from some trickery Sato (p. 46). First,

∫
𝑡

0

𝑑𝑢
𝛽 − 𝑢

= 1
𝛽

∫
𝑡

0

𝑑𝑢
1 − 𝑢/𝛽

= − log(1 − 𝑢/𝛽)∣𝑡
0

= − log(1 − 𝑡/𝛽).

Next,

∫
𝑡

0

𝑑𝑢
𝛽 − 𝑢

= ∫
𝑡

0
∫

∞

0
𝑒−𝑥(𝛽−𝑢) 𝑑𝑥 𝑑𝑢

= ∫
∞

0
∫

𝑡

0
𝑒−𝑥(𝛽−𝑢) 𝑑𝑢 𝑑𝑥

= ∫
∞

0
𝑒−𝑥𝛽 ∫

𝑡

0
𝑒𝑥𝑢 𝑑𝑢 𝑑𝑥

= ∫
∞

0
(𝑒𝑥𝑡 − 1)𝑒−𝑥𝛽

𝑥
𝑑𝑥.

Combining the two, multiplying by 𝛼, and comparing with the gamma ch f gves the
desired result.
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5.5 Fact 3: about gamma functions
The gamma function is defined for Re(𝑎) > 0 by

Γ(𝑎) = ∫
∞

0
𝑥𝑎−1𝑒−𝑥 𝑑𝑥 = ∫

∞

0
𝑥𝑎𝑒−𝑥 𝑑𝑥

𝑥

using Haar measure on ℝ+.

Factorial property: Γ(𝑧 + 1) = 𝑧Γ(𝑧) follows using integration by parts.

Let 0 < 𝑎 < 1 be real. Then, applying the parts trick, noting that the term 𝑒𝑥 −1 removes
the pole at zero, and counting three −1s in the second term

∫
∞

0
(𝑒−𝑥 − 1) 𝑑𝑥

𝑥𝑎+1 = −1
𝑎

𝑒−𝑥 − 1
𝑥𝑎 ∣

∞

0

− 1
𝑎

∫
∞

0
𝑥1−𝑎𝑒−𝑥 𝑑𝑥

𝑥

= −1
𝑎

Γ(1 − 𝑎)

= Γ(−𝑎)

where the last line uses (−𝑎)Γ(−𝑎) = Γ(1 − 𝑎) from the factorial property. This integral
is negative.

Let 1 < 𝑎 < 2 be real. Since 0 < 𝑎 − 1 < 1, we can use the previous result to boostrap

∫
∞

0
(𝑒−𝑥 − 1 + 𝑥) 𝑑𝑥

𝑥𝑎+1 = 1
𝑎

∫
∞

0
(𝑒−𝑥 − 1) 𝑑𝑥

𝑥(𝑎−1)+1

= 1
𝑎

1
𝑎 − 1

Γ(2 − 𝑎)

= Γ(−𝑎).

The adjusted exponential term cancels the higher-order pole. Note the sign change from
differentiating the exponential term. This integral is positive.

5.6 Fact 4: form of ch f in Lévy decomposition
Let 𝐽 be a jump exceedance distribution (decreasing function). 𝐽(𝑥) represents the
frequency of jumps of size ≥ 𝑥. Cat model output typically gives 𝐽 as the sum of the
frequencies of events size ≥ 𝑥. Suppose 𝐽 has density 𝑗, meaning the frequency of jumps
of sizes in 𝐼𝑥 = [𝑥, 𝑥 + 𝑑𝑥] is 𝐽(𝑥) − 𝐽(𝑥 + 𝑑𝑥) ≈ 𝑗(𝑥)𝑑𝑥. Define 𝐴 = 𝐴(𝐽) to be the
Poisson aggregate of 𝐽, meaning jumps appear with Poisson intensity. Taking each jump
in 𝐼𝑥 to have size 𝑥, the total is distributed ∑𝑥 𝑥Po(𝑗(𝑥)𝑑𝑥). By assumption losses of
different sizes are independent. Thus 𝐴 has MGF

𝑀𝐴(𝑡) = E [exp 𝑡 (∑
𝑥

𝑥Po(𝑗(𝑥)𝑑𝑥))]

= E [∏
𝑥

exp 𝑡 (𝑥Po(𝑗(𝑥)𝑑𝑥))]

= ∏
𝑥

E [exp 𝑡 (𝑥Po(𝑗(𝑥)𝑑𝑥))]

= ∏
𝑥

𝑒𝑗(𝑥)𝑑𝑥(𝑒𝑡𝑥−1).
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At this point, it is easier to work with cumulant functions, taking logs to covert the
product into a sum

log 𝑀𝐴(𝑡) = ∑
𝑥

(𝑒𝑡𝑥 − 1)𝑗(𝑥)𝑑𝑥

≈ ∫
∞

0
(𝑒𝑡𝑥 − 1)𝑗(𝑥)𝑑𝑥

using Riemann sums, thus explaining the form of the cumulant function of aggregates
with Poisson frequency that appeasr in the Lévy formula.

For stable variables the tail jumps are powers with density proportional to 𝑗(𝑥) = 1/𝑥𝑎+1

in each tail. Specifically, the Lévy representation uses

log 𝑓(𝑡) = 𝑖𝛾𝑡−𝜎2𝑡2

2
+∫

0

−∞
(𝑒𝑖𝑡𝑢 − 1 − 𝑖𝑡𝑢

1 + 𝑢2 ) 𝑑𝑀(𝑢)+∫
∞

0
(𝑒𝑖𝑡𝑢 − 1 − 𝑖𝑡𝑢

1 + 𝑢2 ) 𝑑𝑁(𝑢)

where in the stable case: 𝑀(𝑢) = 𝑐1/|𝑢|𝛼 and 𝑁(𝑢) = −𝑐2/𝑢𝛼, 𝑐1, 𝑐2 ≥ 0, 𝑐1 + 𝑐2 > 0,
but 𝜎 = 0 unless 𝛼 = 2, in which case 𝑐1 = 𝑐2 = 0 and 𝜎 > 0 (see Gnedenko and N.
(1968), table on p. 164; see also Lukacs (1970), p. 132). For 1 < 𝛼 < 2, the Lévy Khinchine
representation can be adjusted in the constant term, to give the log ch f as

log 𝑓(𝑡) = 𝑐1 ∫
0

−∞
(𝑒𝑖𝑡𝑥 − 1 − 𝑖𝑡𝑥) 𝑑𝑥

|𝑥|𝑎+1 +

𝑐2 ∫
∞

0
(𝑒𝑖𝑡𝑥 − 1 − 𝑖𝑡𝑥) 𝑑𝑥

𝑥𝑎+1 ,

where 𝑐1, 𝑐2 ≥ 0 are are the tail weights.

Look at the second integral 𝐼2 for 𝑡 > 0. We need to get rid of the 𝑖 in the exponent.
Use Cauchy’s theorem on contour integration around a contour from the origin to 𝑅 > 0,
around a circle to 𝑖𝑅 and back to the origin. There are no poles in this region so the
integral is zero. The integral along the arc → 0 as 𝑅 → ∞ as can be seen easily looking
at the absolute value of the integrand and remembering the integral is only over a quarter
arc. Then, we can substitute for 𝑡, contour, substitute for the imaginary integral, and use
the previous integral, to get

𝐼2 = ∫
∞

0
(𝑒𝑖𝑡𝑥 − 1 − 𝑖𝑡𝑥) 𝑑𝑥

𝑥𝑎+1

= 𝑡𝑎 ∫
∞

0
(𝑒𝑖𝑥 − 1 − 𝑖𝑥) 𝑑𝑥

𝑥𝑎+1

= 𝑡𝑎 ∫
𝑖∞

0
(𝑒𝑖𝑥 − 1 − 𝑖𝑥) 𝑑𝑥

𝑥𝑎+1

= 𝑡𝑎𝑖−𝑎 ∫
∞

0
(𝑒−𝑣 − 1 + 𝑣) 𝑑𝑥

𝑣𝑎+1

= 𝑡𝑎𝑖−𝑎Γ(−𝑎) ≥ 0.

Now 𝑖−𝑎 = 𝑒−𝑎 log 𝑖 = 𝑒−𝑖𝑎𝜋/2, giving 𝐼2 = 𝑡𝑎𝑒−𝑖𝑎𝜋/2Γ(−𝑎) ≥ 0. When 𝑡 < 0, the first
integral in REF is the conjugate of the second giving 𝐼1 = 𝑡𝑎𝑒𝑖𝑎𝜋/2Γ(−𝑎). Assembling
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the parts
log 𝑓(𝑡) = 𝑡𝑎Γ(−𝑎) (𝑐1𝑒𝑖𝑎𝜋/2 + 𝑐2𝑒−𝑖𝑎𝜋/2)

= 𝑡𝑎Γ(−𝑎) ((𝑐1 + 𝑐2) cos(𝑎𝜋/2)𝑒𝑖𝑎𝜋/2 + 𝑖(𝑐1 − 𝑐2) sin(𝑎𝜋/2))

= 𝑡𝑎Γ(−𝑎)(𝑐1 + 𝑐2) cos(𝑎𝜋/2) (1 + 𝑖𝑐1 − 𝑐2
𝑐1 + 𝑐2

tan(𝑎𝜋/2))

= −𝑐𝑡𝑎(1 + 𝑖𝛽 tan(𝑎𝜋/2))

where 𝑐 = −Γ(−𝑎)(𝑐1 +𝑐2) cos(𝑎𝜋/2) and 𝛽 = 𝑐1 − 𝑐2
𝑐1 + 𝑐2

. Note that 𝑐 ≥ 0 and −1 ≤ 𝛽 ≤ 1.

That’s where all the weird bits come from! When 𝑡 < 0 use 𝑓(𝑡) = 𝑓(−𝑡). The term 𝑡𝑎

is replaced by (−𝑡)𝑎 = |𝑡|𝑎. The tan term swaps signs (conjugate), which is effected by
adding 𝑡/|𝑡|, which has no effect when 𝑡 > 0. Thus for all 𝑡 we get

log 𝑓(𝑡) = −𝑐|𝑡|𝑎(1 + 𝑖 𝑡
|𝑡|

tan(𝑎𝜋/2)).

A similar argument works when there is no need for the linear term. In that case it can
be subsumed into the constant (not tracked).

This argument fails when 𝑎 = 1 because then the gamma function has a pole at −1
and because we can’t subsume the rest of the trend adjustment term into the constant
(because the integral does not exist). Use the XX function 𝑥/(1 + 𝑥2) which looks like
the identity close to 𝑥 = 0. Split the integral into its real and imaginary parts. The real
part is a well known integral and gives 𝑡𝜋/2. The imaginary part becomes 𝑡 times

lim
𝜖→0

∫
𝑡𝜖

𝜖

sin 𝑣
𝑣2 𝑑𝑣 = lim

𝜖→0
∫

𝑡𝜖

𝜖

𝑑𝑣
𝑣

= log 𝑡. (!)

From there, it’s the same conjugate, combined the parts and slough off the awkward
linear-in-𝑡 term to the constant, to arrive at

log 𝑓(𝑡) = −𝑐|𝑡|(1 + 𝑖𝛽 𝑡
|𝑡|

2
𝜋

log |𝑡|).

This treatment follows Gnedenko and N. (1968), which is a marvel of clarity thanks to
this rock star mathematician.

Figure 12: Andrey Nikolayevich Kolmogorov.
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5.7 Spectrally negative 1 < 𝛼 < 2
When 𝑋 is Lévy stable with 1 < 𝛼 < 2 and 𝛽 = 1 the variable can still take positive
values because of the compensation term. The variable 𝑋 can be thought of as split
into independent small and large jump parts: 𝑋 = 𝑋𝑠 + 𝑋𝑙. The large jump part is
a standard compound Poisson with jump density 𝑗(𝑥) = 1/𝑥𝛼+1. The small part is a
sum of compensated over-dispersed Poisson variables of the form 𝑥𝑛(Po(𝜆𝑛) − 𝜆𝑛) where
𝑥𝑛 ↓ 0 while 𝜆𝑥 ↑ ∞, details TBD. Since the counts are large the Poisson component is
approximately normal, and so each term is approximately N(0, 𝜎2

𝑛) where 𝜎2
𝑛 = 𝑥2

𝑛𝜆𝑛.
Thus the total effect of this part is approximately normal with variance ∑𝑛 𝑥2

𝑛𝜆𝑛. However,
that doesn’t quite work out! The actual result, Nolan (2020) page 100 (see also Zolotarev
(1986) Section 2.5, Uchaikin and Zolotarev (1999) p. 127), works out to be, up to a
constant,

log Pr(𝑋 ≤ 𝑥) ∼ 𝑐2(−𝑥)𝛼/(𝛼−1)

for 𝑋 ∼ St(𝛼, 𝛽 = 1, 0, 0; 𝑆1) in Nolan’s notation. For 𝛼 close to 1 the exponent is very
large and as 𝛼 ↑ 2 the exponent approaches 2, as expected.

Details: TBD another research project. Time to move on.
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6 Parameter Interpretation
examples — roles for 𝜆 and 𝜇 — modeling/defining a unit — movies — pictures —
Tweedie distribution special cases — cat and non-cat div/non-div growth — reasonable 𝑝
— other (Houg) applications — pcitures of all sevs of all 𝑉 — split into Tweedie - gamma
- stable domains — all severity curves

From Probability Models for Insurance post. Originally called Exponential Dispersion
Models, New From Old, Volume.

6.1 All the severity curves

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, ax = plt.subplots(1, 1, figsize=(3.0, 3.0),

constrained_layout=True)
xs = 0.9 ** np.linspace(-9, 150, 1001)[::-1]
ps = np.array([-3, -2, -1, -0.5, -0.25, -0.125, 0, 0.125, 0.25, 0.5,

1, 2, 3, 5, 10, 25])
colors = cm.viridis(np.linspace(0, 1, len(ps)))
for p, color in zip(ps, colors):

ax.plot(xs, xs**p, lw=1, color=color)
ax.set(ylim=[-0.05, 2.5], xlim=[-0.05, 2.5],

xticks=[0,1,2.5], yticks=[0,1,2.5],
xticklabels=['', '1', ''],
yticklabels=['', '1', ''],
aspect='equal');
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Figure 13: A wide range of potential severity “densities”.

Split these up.
fig, axs = plt.subplots(1, 3, figsize=(6.0, 2.0),

constrained_layout=True)
for p, color in zip(ps, colors):

if p < 0:
ax = axs[0]

elif p == 0:
ax = axs[1]

else:
ax = axs[2]

ax.plot(xs, xs**p, lw=1, color=color)
for ax in axs.flat:

ax.set(ylim=[-0.05, 2.5], xlim=[-0.05, 2.5],
xticks=[0,1,2.5], yticks=[0,1,2.5],
xticklabels=['', '1', ''],
yticklabels=['', '1', ''],
aspect='equal')

axs[0].set(title='Downward sloping densities.')
axs[1].set(title='All "equally likely".')
axs[2].set(title='Increasing densities?!');
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Figure 14: Three three kinds of “densities”.
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7 The Four (or Five) S Transformations
shift — scale — slant — size/shape — symmetry/swap
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Figure 15: The impact of shifting, scaling, growth and shaping on a gamma density.

7.1 New from Old
In this section we describe four ways to make a new NEF from an old one:

• shifting,
• scaling,
• shaping, and
• reciprocity.

The effect of the first three of these transformations is illustrated in Figure 15. In every
case the underlying distribution is a gamma.

By definition, exponential tilting operates within a NEF, c.f., the NEF Circle. It does not
create a new NEF.

A distortion operator, such as the Wang and proportional hazard transform, is also familiar
to actuaries. The impact of most distortions on NEFs is unclear. There are exceptions.
For example, the Wang transform acts as an exponential tilt on normal variables.

This section describes the impact of each transformation on the variance function. It
gives several examples of reciprocity, which turns out to be related to surplus growth or
probability of default.

Throughout this section, 𝑋 and 𝑋1 have means 𝑚 and 𝑚1 and variance functions 𝑉 and
𝑉1. They generate NEFs 𝐹 and 𝐹1 with mean domains, the interior of the set of possible
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means, 𝑀 and 𝑀1. The NEF is uniquely specified by the distribution of 𝑋 or by 𝑀𝐹 and
𝑉.

Table 3: 𝑘 is a constant. 𝑐 is the carrier distribution, 𝑉 is the variance function.

Method Math Examples

Shift 𝑋 ↦ 𝑋 + 𝑘 Location
Scale 𝑋 ↦ 𝑘𝑋
Slant 𝑓(𝑥) ↦ 𝑘𝑗𝑒𝜃𝑥𝑓(𝑥) Esscher transform tilting
Shape 𝑐𝑎 ↦ 𝑐𝜆 Additive and reproductive EDMs
Symmetry 𝑉 (𝑚) =

𝑚3𝑉 ∗(1/𝑚)
Letac-Mora reciprocity

Building complex models from simple ones is a time-honored method. It keeps the number
of fundamentally different models to a minimum. For example, all normal distributions
are shifted and scaled versions of a standard normal. Scaling and shaping are the same
operation for a normal distribution, but in general they are not. Lognormal and gamma
distributions have an additional shape parameter. Various programming languages exploit
the shift/scale/shape paradigm to order the menagerie of probability distributions.

7.2 The SSSS EDM Transformations
A given base distribution 𝑋 with density 𝑓 can be adjusted in many ways to create a new
distribution. Four relevant here are what I call the four-esses: shifting, scaling, slanting,
and shaping.

• Shifting (translation, location, position): 𝑋 ↦ 𝑋 + 𝑎. The simplest transformation
is a shift, translating the variable by a constant. This preserves variance structure
but alters location, effectively adjusting for deductibles, policy limits, or inflation-
adjusted thresholds. In the context of EDMs, this corresponds to modifying the
natural parameter without affecting the dispersion function. [Certain losses from a
very large plan with a high deductible.] Affects the mean but not higher central
moments.

• Scaling: 𝑋 ↦ 𝑏𝑋, 𝑏 > 0. Scaling affects both the mean and variance, adjusting
exposure by a multiplicative factor but leaving the coefficient of variation unchanged.
This transformation is fundamental in loss modeling, where losses scale with insured
amounts - though that is unusual (reimbursement rate per day hospitalization? Vs.
property size of loss curves). Within the EDM framework, scaling interacts with the
dispersion function in a predictable manner, maintaining the variance-mean power
relationship. Affects the mean but not higher cumulants (scaled higher central
moments).

• Slanting (exponential tilting or Esscher transform): 𝑓 ↦ 𝑒𝜃𝑋𝑓, Exponential tilting
reweights the probability density function, by adjusting the canonical parameter 𝜃.
This transformation is key in actuarial applications and to fitting with Generalized
Linear Models. Each NEF corresponds to a deviance function 𝑑(𝑦; 𝜇) quantifying
our concent with an observation 𝑦 given parameter 𝜇. The loglikelihood of a unit
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is 𝑑(𝑦; 𝜇) plus terms varying in the EDM but not the NEF. Thus, the maximum
likelihood FIX.

• Shaping by adjusting the index parameter 𝜆. The dispersion parameter 𝜆 governs
the stochastic variability of the process. Adjusting 𝜆 modifies the scale of fluctua-
tions, influencing tail behavior and risk loading. In the Lévy process setting, this
corresponds to altering the jump intensity, directly affecting claim frequency or
severity modeling. In practice, shaping allows for parametric flexibility in capturing
heterogeneous risk profiles.

These transformations provide a toolkit for adapting models to different actuarial settings
and reinforce the connection between EDMs, Lévy processes, and the structural principles
of risk aggregation.

In practical actuarial applications, these four transformations map naturally to real-world
considerations.

• Scaling adjusts for inflation, currency changes (what finance calls a change in
numeriere), or unit conversions. These are essentially trivial changes that do
only affect the mean and not the higher normalized moments (cumulants) of the
distribution.

• Slanting is central to exponential dispersion modeling, particularly in maximum
likelihood estimation using Generalized Linear Models when the dispersion parameter
is fixed, and in risk-adjusted pricing methods such as the Esscher transform.

• Shaping reflects the size of the portfolio or the amount of exposure, as the
dispersion parameter scales with the number of policies or time periods, stabilizing
loss distributions in large samples.

• Shifting is less immediately obvious but can be linked to policy deductibles,
retentions, or regulatory thresholds—effectively translating losses relative to a
reference point. These four transformations offer both theoretical structure and
practical flexibility in loss modeling.

Exposure ↔ severity curve, or size of loss distribution. Infinite, “unnormalizable”.

The “Four-Esses” provide a bridge between the mathematical framework of EDMs and
practical insurance loss modeling. Scaling, as discussed, directly addresses inflation and
different currencies. Slanting XX. Shaping tailors the model to the specific characteristics
of a unit in the portfolio, reflecting its size and diversity. And shifting, while requiring
more nuanced interpretation, can account for deductibles in certain circumstances.

7.3 Affinities: Shift and Scale
Transformations such as 𝑋1 = 𝑎𝑋 + 𝑏 are called affinities.

For a shift 𝑋1 = 𝑋 + 𝑏 and 𝑚1 = 𝑚 + 𝑏. Therefore

𝑉1(𝑚1) = 𝑉 (𝑚1 − 𝑏).

For a scale 𝑋1 = 𝑎𝑋, 𝑚1 = 𝑎𝑚 and 𝑚 = 𝑚1/𝑎. Therefore

𝑉1(𝑚1) = 𝑎2𝑉 (𝑚1/𝑎)

since Var(𝑎𝑋) = 𝑎2Var(𝑋).
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For a general affinity 𝑋1 = 𝑎𝑋 + 𝑏

𝑉1(𝑚1) = 𝑎2𝑉 (𝑚1 − 𝑏
𝑎

) .

The mapping 𝑋 ↦ 𝑎𝑋 + 𝑏 gives a one-to-one mapping between 𝐹 and 𝐹1.

7.4 Shape, Power, or Division
If 𝑋𝜈, 𝜈 ≥ 0, is a Lévy process then E[𝑋𝜈] = 𝜈E[𝑋1] and Var(𝑋𝜈) = 𝜈Var(𝑋1). Therefore,
if 𝑉𝜈 and 𝑉1 are the respective variance functions of 𝑋𝜈 and 𝑋1 then we get the shape
transformation

𝑉𝜈(𝜇) = Var(𝑋𝜈) = 𝜈Var(𝑋1) = 𝜈𝑉1 (𝜇
𝜈

)

The shape transformation can be used in another way. Rather than consider 𝑋𝜈 as a
family with increasing means we can consider 𝑋𝜈/𝜈, which has a constant mean as 𝜈
varies. If 𝑌𝜈 = 𝑋𝜈/𝜈 then

𝑉𝜈(𝜇) = Var(𝑌𝜈) = Var(𝑋𝜈)/𝜈2 = Var(𝑋1)/𝜈 = 𝑉1(𝜇)/𝜇.

𝑋𝜈 corresponds to the additive EDM that models total losses from a growing portfolio,
and 𝑌𝜈 to the reproductive EDM that models the pure premium or loss ratio.

The power or division terminology arises by writing 𝑋𝜈 as the 𝜈-fold convolution of 𝑋1
using the 𝜈 power of the MGF. Division arises from the ability to “take roots” of an
infinitely divisible distribution. The insurance meanings are losses over multiple periods
and losses over sub-periods.

7.5 Symmetry or Reciprocity
Reciprocity is a more profound way to relate two NEFs. We define it first and then
illustrate with several examples.

Given a NEF, define Θ̃ to be those 𝜃 ∈ Θ so that 𝜅′(𝜃) > 0, i.e., canonical parameters
corresponding to distributions with a positive mean, and define 𝑀+

𝐹 to be the image of Θ̃
under the mean value mapping 𝜅′. Thus 𝜅′ is a bijection between Θ̃ and 𝑀+

𝐹 . NEFs 𝐹
and 𝐹1 define a reciprocal pair if

1. 𝜃 ↦ −𝜅(𝜃) maps Θ̃ to Θ̃1,
2. 𝜃 ↦ −𝜅1(𝜃) maps Θ̃1 to Θ̃, and
3. −𝜅1(−𝜅(𝜃)) = 𝜃 for all 𝜃 ∈ Θ̃.

For a reciprocal pair, the left-hand diagram in Figure 16 commutes. The meaning, starting
from 𝜃 and 𝜃1, is illustrated in the two right hand side diagrams.

Differentiating −𝜅1(−𝜅(𝜃)) = 𝜃 shows 𝜅′
1(−𝜅(𝜃))𝜅′(𝜃) = 1, i.e., the diagram commutes.

The variance functions of a reciprocal pair satisfy the important reciprocity formula

𝑉 (𝑚) = 𝑚3𝑉1 ( 1
𝑚

) ,
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Figure 16

which follows by differentiating 𝜅′
1(−𝜅(𝜃))𝜅′(𝜃) = 1 again and noting 𝑚 = 𝜅′(𝜃) and

𝜅′
1(−𝜅(𝜃)) = 1/𝑚 to obtain

𝜅″
1(−𝜅(𝜃))(𝜅′(𝜃))2 = 𝜅′

1(−𝜅(𝜃))𝜅″(𝜃)

⟹ 𝑉1 ( 1
𝑚

) 𝑚2 = 1
𝑚

𝑉 (𝑚).

Unlike the formulas for affinities and shaping, the reciprocal variance transformation
involves the mean outside 𝑉 (⋅).

The variance function reciprocity formula shows that the set of NEFs with polynomial
variance functions of order less than or equal to three is closed under reciprocity. This
fact allowed such NEFs to be completely classified by Letac and Mora (1990). Classifying
all NEFs with a polynomial variance function is a difficult problem, though it is known
that any polynomial with positive coefficients that vanishes at 𝑚 = 0 is the variance
function of some NEF with positive mean domain Letac and Mora (1990), Corollary 3.3.
If 𝑉 (0) = 0 then the NEF must be supported on a subset of the positive or negative reals
because of the non-degenerate requirement.

If 𝑉 (0) = 0 let 𝑎 ∶= lim𝑚↓0 𝑉 (𝑚)/𝑚 be the right derivative of 𝑉 at zero. If 𝑎 = 0 then
the corresponding NEF is continuous on the positive reals, but can have a mass at zero
(Tweedie). If 𝑎 > 0 then the NEF is discrete and 𝑎 is the smallest positive value with
positive probability. For standard counting distributions 𝑎 = 1. Thus polynomial variance
functions of the form 𝑉 (𝑚) = 𝑚𝑊(𝑚), 𝑊(0) ≠ 0, correspond to counting distributions
(Poisson 𝑉 (𝑚) = 𝑚, negative binomial 𝑚(𝑚 − 1), binomial 𝑚(𝑚 + 1), etc.) and those
of the form 𝑚2𝑊(𝑚) to continuous distributions (gamma 𝑉 (𝑚) = 𝑚2, inverse Gaussian
𝑉 (𝑚) = 𝑚3 and Kendall-Ressel 𝑚2(1 + 𝑚)). The Tweedie family shows that fractional
powers are also possible.

In general, reciprocity is mysterious, Louati (2013) says

Even if in some cases, one of the reciprocal distributions is interpreted as the
first hitting time distribution for a Lévy stochastic process corresponding to
the other, the notion of reciprocity remains mysterious and needs a better
understanding.

The first hitting time distribution interpretation runs as follows. In order to use standard
notation we use 𝑡 in place of 𝜈 to index processes, and we change signs of jumps so they
are negative rather than positive—premium and income are positive, losses are negative.

Let 𝑋𝑡 be a spectrally negative Lévy process, with no positive jumps. The Lévy
measure of 𝑋𝑡 is supported on the negative reals. 𝑋𝑡 could be any of the following plus

53



a positive drift: Brownian motion, an infinite activity process, or a compound Poisson
process. 𝑋𝑡 models the surplus process: cumulative premium minus cumulative losses.
Losses are negative jumps and premium is a continuous positive trend.

Define the first hitting time for level 𝑥 to be 𝑇𝑥 = inf{𝑡 > 0 ∣ 𝑋𝑡 ≥ 𝑥}. Since 𝑋𝑡 has no
upward jumps, 𝑋𝑇𝑥

= 𝑥: it can’t jump over 𝑥, it can only jump downwards. Next, 𝑇𝑥 is
infinitely divisible. For any 𝑛, 𝑇𝑥 is the sum of 𝑛 independent copies of 𝑇𝑥/𝑛, because
the Markov property of 𝑋𝑡 applies at a stopping time. We can reset 𝑋𝑡 at the random
time 𝑇𝑥/𝑛. As a result, 𝑇𝑥, 𝑥 ≥ 0, is a strictly increasing Lévy process. Such processes
are called subordinators.

We can identify the distribution of 𝑇𝑥. By assuming E[𝑋1] ≥ 0 (i.e., premium exceeds
expected claims, so the surplus process is increasing on average) it is guaranteed that 𝑋𝑡
will hit any positive level 𝑥 in finite time, Pr(𝑇𝑥 < ∞) = 1. Since 𝑋𝑡 is a Lévy process,
its moment generating function E[𝑒𝜃𝑋𝑡 ] = 𝑒𝑡 𝜅𝑋(𝜃) where 𝜅𝑋 is the cumulant generating
function of 𝑋1, which is independent of 𝑡.

The exponential tilt of 𝑋𝑡 has density 𝑒𝜃𝑥−𝑡𝜅𝑋(𝜃)𝑓𝑡(𝑥), where 𝑓𝑡 is the density of 𝑋𝑡. Since
a density integrates to 1, we have

E[𝑒𝜃𝑋𝑡−𝑡𝜅𝑋(𝜃)] = ∫ 𝑒𝜃𝑥−𝑡𝜅𝑋(𝜃)𝑓𝑡(𝑥) 𝑑𝑥

= 1

for all 𝑡 ≥ 0. Therefore the process 𝑒𝜃𝑋𝑡−𝑡𝜅𝑋(𝜃), 𝑡 ≥ 0, is a martingale. Martingales are a
generalization of a constant process. They have no drift and a constant mean expectation.
The lack of drift also holds if we stop the process at a random stopping time3 Stopping
𝑒𝜃𝑋𝑡−𝑡𝜅𝑋(𝜃) at 𝑇𝑥 and remembering 𝑋𝑇𝑥

= 𝑥 produces an expression for the MGF of 𝑇𝑥

E[𝑒𝜃𝑥−𝑇𝑥𝜅𝑋(𝜃)] = 1
⟹ 𝑀𝑇𝑥

(−𝜅𝑋(𝜃)) = E[𝑒−𝜅𝑋(𝜃)𝑇𝑥 ]
= 𝑒−𝜃𝑥.

Taking logs of both sides gives

𝜅𝑇𝑥
(−𝜅𝑋(𝜃)) = −𝜃𝑥

where 𝜅𝑇𝑥
is the cumulant generating function of 𝑇𝑥. Since 𝑇𝑥 is infinitely divisible we

know that 𝜅𝑇𝑥
= 𝑥 𝜅𝑇, where 𝜅𝑇 is the cumulant generating function of 𝑇1. As a result

−𝜅𝑇(−𝜅𝑋(𝜃)) = 𝜃,

showing 𝑇𝑥 and 𝑋𝑡 define reciprocal NEFs, and explaining the name. The formula relies
on the fact that 𝑋𝑡 is a Lévy process with no positive jumps and E[𝑋1] ≥ 0.

Example 7.1 (Reciprocity Examples).
3The Optional Stopping Theorem says you can’t beat a series of fair bets by choosing a clever stopping

time. The famous doubling strategy shows there are limitations: the sequence of bets must be bounded.
If 𝑋𝑡∧𝑇 is a bounded and 𝑇 is a stopping time with finite expectation then E[𝑋𝑇] = E[𝑋0]. In the
present case, the process exp(𝛽𝑋𝑡 − 𝜆𝑡) is bounded for 0 ≤ 𝑡 ≤ 𝑇𝑥 (because 𝐵𝑡 ≤ 𝑥). However, E[𝑇 ]
could be infinite. To get around that, work with 𝑇𝑛 = 𝑇 ∧ 𝑛 and let 𝑛 → ∞.
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1. Poisson process hitting level 𝑛 ↔ gamma.
2. Normal with no drift hitting level 𝑥 ↔ Lévy stable.
3. Normal with positive drift hitting level 𝑥 > 0 ↔ inverse Gaussian.
4. Spectrally negative extreme stable (1 < 𝛼 < 2, 𝑝 < 0) with positive drift (mean)

hitting level 𝑥 > 0 ↔ positive extreme (0 < 𝛼1 = 𝛼−1 < 1, 𝑝1 = 3 − 𝑝).

Example 7.2 (Tweedie reciprocity 𝑝 ≠ 1, 2 in detail). Reciprocity requires

𝑉 (𝜇) = 𝜇3𝑉1(1/𝜇).

In the Tweedie case 𝑉 (𝜇) = 𝜇𝑝, the reciprocal pair is therefore

𝑉1(𝜇) = 𝑉 (𝜇)
𝜇3 = 𝜇3−𝑝.

All four cases in Example 7.1 are Tweedie pairs 𝑝 ↔ 𝑝1 = 3 − 𝑝. The corresponding 𝛼
values are related by

𝛼1 = 2 − 𝑝1
1 − 𝑝1

= 𝑝 − 1
𝑝 − 2

= 1
𝛼

.

Recall also (1 − 𝑝)(1 − 𝛼) = (𝑝 − 1)(𝛼 − 1) = −1.

When 𝑝 ≠ 1, 2, ∞, we have

𝜅(𝜃) = 𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

.

Then the pair 𝜅1, 𝜅 satisfies the reciprocity equation:

−𝜅1(−𝜅(𝜃)) = −

⎧{{
⎨{{⎩

𝛼1 − 1
𝛼1

⎛⎜⎜⎜
⎝

−𝛼 − 1
𝛼

( 𝜃
𝛼 − 1

)
𝛼

𝛼1 − 1
⎞⎟⎟⎟
⎠

𝛼1⎫}}
⎬}}⎭

= − {𝛼1 − 1
𝛼1

(( 𝜃
𝛼 − 1

)
𝛼

)
𝛼1

}

= − {𝛼1 − 1
𝛼1

( 𝜃
𝛼 − 1

)}

= − {−𝜃}
= 𝜃.

Example 7.3 (Normal-Inverse Gaussian.). Here is the classic example of reciprocity
worked out “by-hand”. Let 𝑋𝑡 = 𝑐𝑡 + 𝜎𝐵𝑡 be a Brownian motion with a positive trend,
so 𝑇𝑥 is guaranteed to be finite for 𝑥 ≥ 0. 𝑋𝑡 is normal with mean 𝑐𝑡 and variance
𝑡𝜎2, by definition of a Brownian motion. The cumulant generator 𝜅𝑋(𝜃) = log E[𝑒𝜃𝑋𝑡 ] =
log E[𝑒𝜃𝜎𝐵𝑡+𝑐𝑡𝜃] = 𝑡(𝑐𝜃 + 𝜎2𝜃2/2) by the well-known formula for the mean of a lognormal
distribution.
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Reciprocity shows

𝜅𝑇(−𝜅𝑋(𝜃)) = 𝜅𝑇 (−𝑐𝜃 − 𝜎2𝜃2

2
) = −𝜃.

Inverting, using the quadratic formula, shows

0 = 𝜎2𝜃2

2
+ 𝑐𝜃 + 𝑦

⟹ 𝜃 = −𝑐 + √𝑐2 − 2𝑦𝜎2

𝜎2 ,

since the argument for the Laplace transform must be positive and the other root is
negative. Therefore the cumulant generating function of 𝑇1 is

𝜅𝑇(𝑦) = 𝑐 − √𝑐2 − 2𝑦𝜎2

𝜎2 = 𝑐
𝜎2 (1 − √1 − 2𝜎2𝑦

𝑐2 ) = 1
𝜇𝜎2 (1 − √1 − 2𝜇2𝜎2𝑦)

where 𝜇 = 1/𝑐. Consulting a table of Laplace transforms, reveals this is the cumulant
generating function for an inverse Gaussian distribution with mean 𝜇 and variance 𝜇3𝜎2.
𝜆 is used for 1/𝜎2 in Johnson, Kotz, and Balakrishnan (1994, p. 261). This reciprocal
relationship between cumulant generating functions is why Tweedie chose the named
inverse Gaussian (op. cite p. 250). The mean makes sense: if we are traveling at speed 𝑐
then it should take time 𝑥/𝑐 to travel distance 𝑥.

If 𝜎2 = 1 and 𝑐 = 0, so there is no drift, then 𝜅𝑇(𝑦) = −
√

−2𝑦, which is the cumulant
generating function for a Lévy stable distribution with 𝛼 = 1/2. In the absence of drift,
the waiting time 𝑇1 has infinite expectation: you are guaranteed to get to level 1, just not
quickly!

How are these facts related to exponential family distributions? By the inverse relation-
ship of cumulant generating functions, the normal and inverse Gaussian are reciprocal
distributions. Therefore the variance functions are related by 𝑉1(𝑚) = 𝑚3𝑉 (𝑚) = 𝜎2𝑚3,
as expected. �

Example 7.4 (Extreme stable reciprocity). Example 7.3 generalizes to a reciprocity
between WHAT AND WHAT?

Example 7.5 (Tweedie distribution reciprocity). Example 7.3 also generalizes to a
reciprocity between Tweedie Tw𝑝(𝜇, 𝜎2) and Tw3−𝑝(𝜇, 𝜎2) for 1 ≤ 𝑝 ≤ 2. DETAILS
This includes reciprocity between a gamma and Poisson process, where the gamma gives
the waiting time for WHAT.
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8 Volume Reconsidered
modeling a dynamic portfolio — div/non-div growth — interpreting 𝑝 ≠ 1, 2
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9 Additional Source Code
reproducible research — reproducing examples — extending examples

Here is some Python code needed to run examples, it is executed using
#| echo: false
#| label: set-up-code
# also provides a separator in qmd between the yaml and first text block
%run post_code.py

before anything else is run. The code relies on an up to date version of the aggregate
package, available from GitHub and PyPi. It contains standard programming nonsense.
"""
Code to support the Tweedie post.

Read in to the environment with %run post_code.py.

Pulls ideas from Going Spectral post (on graphics)...that's a work in progress.
"""

# all imports
from aggregate import build, qd, Distortion, Portfolio
from greater_tables import GT
from IPython.display import HTML, display
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# matplotlib options
PLOT_FACE_COLOR = 'white'
FIGURE_BG_COLOR = '#e9e9f2' # matches beamer background blue
plt.rcParams.update({

"axes.edgecolor": "black",
"axes.facecolor": PLOT_FACE_COLOR,
"axes.labelcolor": "black",
"figure.dpi": 300,
"figure.facecolor": FIGURE_BG_COLOR,
"font.family": "serif",
"font.size": 9,
"legend.edgecolor": "none",
"legend.facecolor": PLOT_FACE_COLOR,
"legend.labelcolor": "black",
"text.color": 'black',
"xtick.color": 'black',
"ytick.color": 'black',
# "font.family": "sans-serif",
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'font.family': 'serif',
'font.monospace': ['Ubuntu Mono', 'QuickType II Mono', 'Cascadia Mono',

'DejaVu Sans Mono'],
'font.sans-serif': ['Myriad Pro', 'Segoe UI', 'DejaVu Sans'],
'font.serif': ['STIX Two Text', 'Times New Roman', 'DejaVu Serif'],
'mathtext.fontset': 'stixsans',

})

# pandas options
def my_ff(x):

"""My float formatter."""
try:

if x == int(x):
return f'{x:,d}'

elif abs(x) < 0.005:
return f'{x:.5g}'

elif abs(x) < 100:
return f'{x:.3f}'

else:
return f'{x:,.0f}'

except:
return str(x)

pd.options.display.float_format = my_ff

# greater tables
__gt_global = GT()

def qd(x, **kwargs):
return display(HTML(GT(x, **kwargs)))

def qdagg(b):
"""qd an Aggregate or Portfolio object, dealing with NaNs."""
MAGIC_NO = -99.1223334444
bit = b.describe.fillna(MAGIC_NO)
with pd.option_context('display.float_format', lambda x: '' if x==MAGIC_NO else f'{x:.5g}'):

display(bit)
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