
Inverting Characteristic Functions Using FFTs

Stephen J. Mildenhall

2025-01-23

Figure 1: Image inspired by circular functions 𝑡 ↦ 𝑒−2𝜋𝑖𝑡 used in Fourier transforms.

Introduction
This post describes how to use FFTs to invert the characteristic function (ch f) of a
probability distribution to recover the underlying distribution. This is a valuable technique
for distributions such as the stable and Tweedie that have a closed form characteristic
function but not probability density or cumulative probability funciton. It is also instructive
to see how Fourier transforms and characteristic functions relate to FFTs.

The post is in five sections. Section 1 describes the algorithm and Section 2 describes the
errors it may be introduce. Section 3 provides eight core examples, illustrating different
behaviors and shows how to use the unwrap function recently added to aggregate.
Section 4 lays out the background and theory in more depth. Section 5 adds more
examples.

Abbreviations. Throughout the post: ch f is characteristic function, pdf and cdf the
probability density and cumulative density function, ft (ift) the (inverse) Fourier transform,
and FFT (IFFT) the (inverse) Fast Fourier Transform.

1 Algorithm
To invert a ch f using the FFT you must determine the effective support interval of the
distribution, convert the ch f into a Fourier transform and sample it, invert the sample
using the FFT, and finally translate the result to the desired support interval. Here are
the details of the algorithm. Section 4.5 explains why it works.

1

https://aggregate.readthedocs.io/en/latest/3_reference/3_x_Distribution.html#aggregate.distributions.Aggregate.unwrap
https://aggregate.readthedocs.io/en/latest/

Algorithm to Invert a Characteristic Function Using FFTs

1. Inputs.
1. The characteristic function 𝜙(𝑡) of a distribution 𝐹.
2. An interval 𝐼 = [𝑥min , 𝑥max] ⊂ ℝ with 𝐹(𝑥max) − 𝐹(𝑥min) close to 1.
3. The number of samples 𝑛 = 2log2 for an integer log2 ≥ 1.

2. Computations.
1. 𝑏 = 𝑥range/𝑛 = (𝑥max − 𝑥min)/𝑛, the discretization step size.
2. 𝑓max = 1/𝑏, the maximum sampling frequency.
3. Sample the Fourier transform ̂𝐹 (𝑡) = 𝜙(−2𝜋𝑡) at the points 𝑡𝑙 = 𝑙𝑓max /𝑛 for

𝑙 = 0, 1, … , 𝑛/2 + 1 to obtain a vector v = (̂𝐹 (𝑡𝑙))𝑙.
4. Take the real IFFT of v to obtain a vector p = (𝑝0, … , 𝑝𝑛−1).

3. Results. For 𝑘 = 0, … , 𝑛 − 1

𝑝𝑘 ≈ ∑
𝑚∈ℤ

𝐹((𝑚𝑛 + 𝑘 + 1/2)𝑏) − 𝐹((𝑚𝑛 + 𝑘 − 1/2)𝑏). (1)

When condition (1.2) holds we say informally that 𝐼 contains the effective support of
𝑋. The 𝑝𝑘 in Equation 1 are periodic, with period 𝑛. The condition in step (1.2) means
that the effective support is contained in one period. The only trick is to match 𝑘 to the
desired 𝑥-scale. For that, it is best to select 𝑥min as an integer multiple of 𝑏 (automatically
true when 𝑥min = 0), say 𝑥min = 𝑚0𝑏. Then

Pr(𝑋 ∈ (𝑥min + (𝑘 − 1/2)𝑏, 𝑥min + (𝑘 − 1/2)𝑏])
= 𝐹((𝑚0 + 𝑘 + 1/2)𝑏) − 𝐹((𝑚0 + 𝑘 − 1/2)𝑏)
≈ 𝑝𝑘.

In turn
𝐹((𝑚0 + 𝑘 + 1/2)𝑏) − 𝐹((𝑚0 + 𝑘 − 1/2)𝑏) ≈ 𝑓(𝑚0 + 𝑘𝑏)𝑏 (2)

provided 𝑏 is small enough, which gives an estimate of the density if it exists. The rationale
behind these steps is laid out in Section 4. The value 𝑥min is often known from the support
of 𝑋. For example, it is 0 for any non-negative 𝑋 such as the standard lognormal or
gamma. If 𝐹 can be computed, the inputs 𝑥min and 𝑥max can be determined as quantiles
𝑞(𝑠) and 𝑞(1 − 𝑠) of 𝐹 for small 𝑠.

Philosophical aside. There is a chicken-and-egg problem here: how to determine 𝐼 if 𝜙 is
known but not 𝐹? 𝐼 can be input based on an inspired guess. If it is not given, the routine
FourierTools.invert cheats by requiring 𝐹 is given and then determines 𝐼 using lower
and upper quantiles. If you really don’t know 𝐹, then determine the maximum sampling
frequency 𝑓 so that |𝜙(−2𝜋𝑓)| is very small (a ft always tends to zero as 𝑓 → ∞). The
inverse of the sampling frequency is a good choice for the discretization step size 𝑏 = 1/𝑓.
Then, determine 𝑛 so that 𝑛𝑏 is large enough to contain all the features of the distribution,
through a process of trial an error if necessary. In practice, you always know enough
about 𝐹 to estimate quantiles.

2 Errors
There are three sources of error in the FFT algorithm of Section 1.

2

1. Aliasing error whereby the tail of 𝑋 wraps around into 𝐼, Equation 1. We want
𝑝𝑘 = 𝐹((𝑘 + 1/2)𝑏) − 𝐹(𝑘 − 1/2)𝑏) but end up with ∑𝑚∈ℤ 𝐹((𝑚𝑛 + 𝑘 + 1/2)𝑏) −
𝐹(𝑚𝑛 + 𝑘 − 1/2)𝑏). Aliasing is controlled by ensuring 𝐼 is long enough to be the
effective support, containing the preponderance of the probability. Since 𝐼 has length
𝑃 = 𝑛𝑏, once 𝑏 is selected aliasing is controlled by making 𝑛 large enough.

2. Discretization error results from replacing the original distribution with a dis-
cretized approximation, Equation 2. It is controlled by decreasing the bucket size 𝑏.
The error comes from the difference between 𝑓(𝑘𝑏)𝑏 and 𝐹((𝑘+1/2)𝑏)−𝐹(𝑘−1/2)𝑏).
It manifests as a smearing of details: narrow spikes in 𝐹 are lost. There is no dis-
cretization error for a discrete distribution when 𝑏 = 1.

3. Truncation error results from replacing ∫∞
−∞

with ∫𝑓max

−𝑓max
when the ft is inverted,

because the algorithm uses a finite sample. Truncation error is rarely an issue because
ft functions typically tend to zero quite quickly. Since 𝑓max = 1/𝑏, truncation error
normally occurs in conjunction with discretization error (𝑏 too large, 𝑓max too small).
However, it manifests differently, as negative probabilities

Table 1: Manifestation and cause of errors and corresponding examples.

Type of Error Manifestation Cause Examples

Aliasing Tails wrap around into body 𝑛𝑏 too small Section 3.2,
Section 3.3,
Section 3.6

Discretization Fine detail of 𝐹 lost 𝑏 too large
Truncation Negative probabilities 𝑓 = 1/𝑏 too small Section 3.5

3 Core examples

Python set up
Here is the Python code needed to run examples. The code relies on an up to date
version of the aggregate package, available from GitHub and PyPi. This is standard
programming nonsense.
from aggregate import __version__ as v
if v < '0.24.2':

raise ValueError('Need aggregate v0.24.2 or later.\n'
'Run pip install -U aggregate to update.')

from aggregate import build
from aggregate.extensions.ft import FourierTools, make_levy_chf

import scipy.stats as ss
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.display import display

3

https://aggregate.readthedocs.io/en/latest/index.html
https://github.com/mynl/aggregate
https://pypi.org/project/aggregate/

def my_ff(x):
"""My float formatter."""
try:

if x == int(x):
return f'{x:,d}'

elif abs(x) < 0.005:
return f'{x:.5g}'

elif abs(x) < 100:
return f'{x:.3f}'

else:
return f'{x:,.0f}'

except:
return str(x)

pd.options.display.float_format = my_ff

try:
from greater_tables import qd

except ModuleNotFoundError:
print('Greater tables not found...using IPython.display.')
qd = display

qd = display

3.1 Basic example, Poisson distribution
The first example uses a Poisson with mean 10. The bucket size 𝑏 = 1 because the Poisson
is discrete, and 𝑛 = 25 = 32 buckets, providing enough “space” to capture the full range
of outcomes. There is no discretization error (already discrete) and imperceptible aliasing
since Pr(𝑁 > 32) = 7.37 × 10−9. The distribution starts at 𝑥min = 0. The ch f of a
Poisson with mean 𝑛 is

𝜙(𝑡) = 𝑒𝑛(𝑒𝑖𝑡−1),

see Poisson distribution on Wikipedia. Throughout the post, ch f’s are taken from
Wikipedia.

This, and all subsequent code blocks follows the same pattern. Create the FourierTools
object, passing in the ch f and a scipy.stats distribution. The latter is used to estimate
the effective support and plot the numerical results against the actual. The object method
invert does the work, the code is shown below. The plot method produces the graphic.
en = 10
ft_obj = FourierTools(

chf=lambda t: np.exp(en * (np.exp(1j * t) - 1)),
fz=ss.poisson(en)

)
ft_obj.invert(log2=5, x_min=0)
print(ft_obj.describe())
ft_obj.compute_exact()

4

https://en.wikipedia.org/wiki/Poisson_distribution

print(f'Pr(Po(10)>=32) = {ft_obj.fz.sf(32):.4f}')
ft_obj.plot()

Pr(Po(10)>=32) = 0.0000

0 10 20 30
Outcome, x

0.00

0.05

0.10

Density
Fourier
exact

0 10 20 30
Outcome, x

10 10

10 7

10 4

10 1

102
Log density

Fourier
exact

0 10 20 30
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.00 0.25 0.50
frequency

10 8

10 6

10 4

10 2

100

A
m

pl
itu

de
 |f

t|

Amplidude

0 10 20 30
Outcome, x

10 10

10 7

10 4

10 1

log sf and cdf

10

5

0

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 2: Poisson, mean 10.

The six plots in Figure 2 show, clockwise from top left:

1. The density created by Fourier inversion (solid blue) and the true density per
scipy.stats (dashed red).

2. Density on a log scale, to show possible differences in the tail more starkly. Here
they agree over the entire range.

3. The survival and cumulative distribution functions Pr(𝑋 > 𝑥) and Pr(𝑋 ≤ 𝑥)
respectively. The cdf is in blue and red, sf in green and purple; solid Fourier, dashed
exact.

4. The sampled Fourier transform. The blue line shows the actual transform, which
usually decreases quickly to 0. The orange line shows ̂𝐹 /| ̂𝐹 | to show how the ft
wraps around the origin.

5. The amplitude (purple line, left log-scale) and phase (green, right scale) of the ft.
The unwrapped phase tries to correct for the ft wrapping around the origin using
np.unwrap.

6. The log survival and cumulative distribution functions. A log version of the plot
above it to make tail behavior more obvious.

INFO Note

The first four examples use a Poisson distribution for simplicity, but could equally
use any other continuous distribution.

5

3.2 Poisson with aliasing
Here is a simple example of aliasing (wrapping), using the same Poisson with mean of 10
but only 𝑛 = 24 = 16 buckets. This is not enough space to contain the answer, and the
right tail of the distribution wraps around and appears on the left as the uptick in the
blue line in the first and second plots.
ft_obj.invert(log2=4, x_min=0)
need to recompute because wraps works off actual
ft_obj.compute_exact(calc='survival')
print(f'Pr(Po(10)>=16) = {ft_obj.fz.sf(16):.4f}')
ft_obj.plot()

Pr(Po(10)>=16) = 0.0270

0 5 10 15
Outcome, x

0.00

0.05

0.10

Density
Fourier
exact

0 5 10 15
Outcome, x

10 3

10 2

10 1

100

101

102
Log density

Fourier
exact

0 5 10 15
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.00 0.25 0.50
frequency

10 8

10 6

10 4

10 2

100

A
m

pl
itu

de
 |f

t|

Amplidude

0 5 10 15
Outcome, x

10 3

10 2

10 1

100

101
log sf and cdf

2

0

2

4

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 3: Poisson, mean 10 with too few buckets introducing aliasing.

Figure 4 decomposes the aliasing. Clockwise from the top left:

1. The Fourier result (blue), the exact result (red dashed) and the tail that wraps
around (thin green).

2. As first plot, but showing each result incrementally, and showing the tails in context.
The vertical lines mark off the periods of width 𝑛𝑏 = 𝑃. The small gaps between
the wrap segments have width 𝑏. They are visible only when 𝑏 is large relative to 𝑛,
as in this case where 𝑏 = 1 and 𝑛 = 16.

3. Plot 2 on a log 𝑦 scale, making it clear how the wraps are translated left into the
first column.

4. Plot 1 on a lot 𝑌 scale.

The second plot makes the source of the aliasing clear.

6

df = ft_obj.plot_wraps([1, 2], add_tail=True)
ft_obj.last_fig.axes[1].legend().set(visible=False);

0 5 10 15
Outcome, x

0.00

0.05

0.10

D
en

sit
y

Cumulative aliasing

0 32
Outcome, x

0.00

0.05

0.10

D
en

sit
y

Incremental aliasing

0 5 10 15
Outcome, x

10 4

10 3

10 2

10 1

Lo
g

de
ns

ity

Cumulative - log scale

Fourier
1

2
exact

0 32
Outcome, x

10 14

10 10

10 6

10 2

Lo
g

de
ns

ity

Incremental - log scale

Figure 4: Aliasing, showing how different translates wrap-around.

3.3 Poisson with extreme aliasing
Figure 5 illustrates more extreme aliasing. It shows an attempt to model a compound
Poisson distribution with a mean of 256 using only 32 buckets. The standard deviation is
16, and a normal approximation indicates the width of 𝐼 should be at least 6 × 16 = 96
(for ±3𝜎). The result is the almost straight blue line, top left. The remaining plots are
largely meaningless.
en = 256
ft_obj = FourierTools(

chf=lambda t: np.exp(en * (np.exp(1j * t) - 1)),
fz=ss.poisson(en)

)
ft_obj.invert(log2=5, x_min=0)
ft_obj.compute_exact(calc='survival')
print(ft_obj.describe())
print(f'99.99%ile of Po(10) is {ft_obj.fz.isf(0.0001)}')
ft_obj.plot()

99.99%ile of Po(10) is 318.0

7

0 10 20 30
Outcome, x

0.00

0.01

0.02

0.03

Density

Fourier
exact

0 10 20 30
Outcome, x

10 2

10 1

100

101

102
Log density

Fourier
exact

0 10 20 30
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.00 0.25 0.50
frequency

10 185

10 136

10 87

10 38

1011

A
m

pl
itu

de
 |f

t|

Amplidude

0 10 20 30
Outcome, x

10 2

10 1

100

101
log sf and cdf

0

1

2

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 5: Extreme aliasing, Poisson, mean 256, computed with only 32 samples.

The aliasing plot, Figure 6 top right, explains what is happening. The distribution “lives”
between 6 and 9 translations of 𝐼 = [0, 32] to the right, i.e., between 192 and 320, but is
not contained within any single 𝐼. Each vertical slice is translated back to the origin and
added vertically giving the cumulative totals, on the top left.
df = ft_obj.plot_wraps([6, 7, 8, 9], add_tail=True)
ft_obj.last_fig.axes[1].legend().set(visible=False);
for ax in [ft_obj.last_fig.axes[1], ft_obj.last_fig.axes[3]]:
ax.set(xticks=ft_obj.x_min + np.arange(0, 11, 2) * ft_obj.x_max)
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator(n=2))

8

0 10 20 30
Outcome, x

0.00

0.01

0.02

0.03

D
en

sit
y

Cumulative aliasing

0 64 128 192 256
Outcome, x

0.00

0.01

0.02

0.03

D
en

sit
y

Incremental aliasing

0 10 20 30
Outcome, x

10 5

10 4

10 3

10 2

Lo
g

de
ns

ity

Cumulative - log scale

Fourier
6
7

8
9
exact

0 64 128 192 256
Outcome, x

10 5

10 4

10 3

10 2

Lo
g

de
ns

ity

Incremental - log scale

Figure 6: Extreme aliasing produces nonsensical results, but the aliasing explains how
they occur.

Table 2 shows the probabilities Pr(𝑁 ∈ 𝐼 + 𝑘𝑃) for 𝑘 = 6, 7, 8, 9. None of the slices
satisfies the condition in (1.2).
qd(df)

Table 2: Probabilities in each slice for Figure 6.

Table 2
x0 x1 Pr(X�x1) Pr(X�x0) Pr(X in Wrap)

Wrap

6 192 223 0.019 1.7241e-05 0.019
7 224 255 0.492 0.023 0.469
8 256 287 0.974 0.517 0.457
9 288 319 1.000 0.977 0.023

This example essentially reproduces Figure 1 in Mildenhall (2024).

3.4 Poisson with large mean
The case of a Poisson distribution with a very high mean is interesting because it shows
that Fourier methods do not need space for the whole distribution, just its effective
support. We can use periodicity to translate the answer to the correct outcome range.

9

This example reproduces a Poisson with mean 10, 280. The standard deviation is about
100 and the effective support of the distribution (using the normal approximation) is about
[9750, 10550]. Thus, a satisfactory approximation can be obtained with only 210 = 1024
buckets. The second plot shows a very slight aliasing on the left.
en = 10280
ft_obj = FourierTools(

chf=lambda t: np.exp(en * (np.exp(1j * t) - 1)),
fz=ss.poisson(10280)

)
ft_obj.invert(log2=10, x_min=9750)
ft_obj.compute_exact(calc='survival')
print(ft_obj.describe())
ft_obj.plot()

10000 10500
Outcome, x

0.000

0.001

0.002

0.003

0.004
Density

Fourier
exact

10000 10500
Outcome, x

10 10

10 6

10 2

102

Log density
Fourier
exact

10000 10500
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.00 0.25 0.50
frequency

10 253

10 186

10 119

10 52

1015

A
m

pl
itu

de
 |f

t|

Amplidude

10000 10500
Outcome, x

10 10

10 7

10 4

10 1

log sf and cdf

0

20

40

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 7: Poisson, mean 10280, computed using only 1024 buckets by shifting.

Adjusting this example to set x_min=0 shows its effect. Figure 7 uses 𝑥min = 9750. Setting
𝑥min = 0 results in Figure 8. It is clear that the density could be sliced vertically and the
pieces rearranged to produce the correct density, c.f., Figure 6 top left.
ft_obj.invert(log2=10, x_min=0)
ft_obj.compute_exact(calc='survival')
print(ft_obj.describe())
ft_obj.plot()

10

0 500 1000
Outcome, x

0.000

0.001

0.002

0.003

0.004
Density

Fourier
exact

0 500 1000
Outcome, x

10 10

10 7

10 4

10 1

102

Log density
Fourier
exact

0 500 1000
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.00 0.25 0.50
frequency

10 253

10 186

10 119

10 52

1015

A
m

pl
itu

de
 |f

t|

Amplidude

0 500 1000
Outcome, x

10 10

10 7

10 4

10 1

log sf and cdf

0

20

40

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 8: Poisson, mean 10280, computed using only 1024 without shifting.

Figure 8 essentially reproduces Figure 2 in Mildenhall (2024).

3.5 Gamma with frequency-domain truncation error
This example uses too few buckets, resulting in 𝑏 being too large and 𝑓max too small
and hence producing discretization error and truncation error. The truncation of the
Fourier integral (replacing ∫∞

−∞
with ∫𝑓max

−𝑓max
) introduces negative probabilities, Figure 9

top left and Table 3: there is no way for negative probabilities to occur from aliasing or
discretization error. The example uses a gamma distribution with shape 2.
alpha = 2
ft_obj = FourierTools(

chf=lambda t: (1 - 1j * t) ** -alpha,
fz=ss.gamma(alpha, loc=0)

)
ft_obj.invert(log2=4, x_min=0)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

11

0 20 40
Outcome, x

0.0

0.1

0.2

Density
Fourier
exact

0 20 40
Outcome, x

10 17

10 13

10 9

10 5

10 1

Log density

Fourier
exact

0 20 40
Outcome, x

0.0

0.5

1.0

sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.0 0.1 0.2
frequency

100

6 × 10 1

A
m

pl
itu

de
 |f

t|

Amplidude

0 20 40
Outcome, x

10 17

10 13

10 9

10 5

10 1

log sf and cdf

1.5

1.0

0.5

0.0

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 9: Gamma, shape 𝛼 = 2, with only 16 buckets. Truncation error introduces
negative probabilities.

qd(ft_obj.df.query('p<0'))

Table 3: Negative probabilities caused by truncation of the Fourier integral.

Table 3
p

x

10.732 -0.028
16.097 -0.012
21.463 -0.0012877
24.146 -0.0038174
29.512 -0.015
34.878 -0.035
40.244 -0.098

3.6 Stable distributions
The method described in this post has a practical application approximating members of
the important stable family of distributions (Nolan 2020), which are otherwise hard to
compute in other ways. In fact, the scipy.stats stable class recently implemented FFT
approximations, though these are considered experimental. FFT and other methods of
computation are discussed in Mittnik et al. (1999) and Wang and Zhang (2008). The
latter is implemented and discussed in Section 4.6.

Stable distributions are determined by two shape parameters: 𝑎 ∈ (0, 2) and skewness
𝑏 ∈ [−1, 1]. The normal is the limit as 𝑎 → 2. The skewness has the same sign as 𝑏,

12

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levy_stable.html

increases with |𝑏|, and 𝑏 = 0 is symmetric. Two well-known examples are the Cauchy
distribution when 𝑎 = 1, and the Lévy stable distribution when 𝑎 = 1/2 and 𝑏 = 0. These
are the only cases with a simple pdf or cdf. Stable distributions are all thick tailed with

Pr(𝑋 > 𝑥) ∼ 1
𝑥𝛼 ,

meaning smaller 𝑎 results in thicker tails. If 𝑎 ≥ 1 or 𝑏 ∈ (−1, 1), then the distribution is
supported ℝ. If 𝑎 < 1 and 𝑏 = −1 (resp. 𝑏 = 1) the support is (−∞, 0) (resp. (0, ∞)).
Because of the thick tails, aliasing error is always present to some extent, calling for a
large 𝑛. At the same time, the distributions are quite peaked, calling for a small 𝑏. They
represent a difficult case for FFTs.

We can look at the ch f to determine a reasonable bucket size by determining 𝑓 so | ̂𝐹 (𝑓)|
is small (Brigham 1988, Chapter 6). There is no magic way to determine the number
of buckets: that requires the quantile function or trial and error. Table 4 shows the
calculation to estimate 1/𝑏 for a negatively skewed (𝑏 = −1) Cauchy.
a, b = 1., -1.
levch = make_levy_chf(a, b)
find bs: look for where levch(1/bs) is small
test = np.arange(0, 11)
qd(pd.DataFrame({

'b': 1 / test,
'1/b': test,
'abs ft': np.abs(levch(-2 * np.pi * test))}
).set_index('1/b'))

Table 4: Determining the bucket size for a negatively skewed Cauchy distribution.

Table 4
b abs ft

1/b

0 inf 1
1 1 0.0018674
2 0.500 3.4873e-06
3 0.333 6.5124e-09
4 0.250 1.2162e-11
5 0.200 2.2711e-14
6 0.167 4.2412e-17
7 0.143 7.9201e-20
8 0.125 1.479e-22
9 0.111 2.762e-25
10 0.100 5.1579e-28

The first example is a negatively skewed Cauchy, 𝑎 = 1 and 𝑏 = −1. Table 5 shows some
quantiles for this thick-tailed, negatively skewed distribution.

13

a = 1.
b = -1.
fz = ss.levy_stable(a, b)
ft_obj = FourierTools(

chf=make_levy_chf(a, b),
fz=fz
)

ft_obj.invert(log2=12, x_min=-100, bs=1/32)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

100 50 0
Outcome, x

0.0

0.1

0.2

Density
Fourier
exact

100 50 0
Outcome, x

10 6

10 4

10 2

100
Log density

Fourier
exact

100 50 0
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 5 10 15
frequency

10 36

10 26

10 16

10 6

A
m

pl
itu

de
 |f

t|

Amplidude

100 50 0
Outcome, x

10 6

10 4

10 2

100

log sf and cdf

300

200

100

0

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 10: Cauchy stable distribution with 𝑎 = 1 and 𝑏 = −1.

quantiles
qd(pd.DataFrame([(p, ft_obj.fz.ppf(p)) for p in

[0.001, 0.01, 0.99, 0.999]],
columns=['p', 'quantile']).set_index('p'))

Table 5: Quantiles for the Cauchy stable distribution with 𝑎 = 1 and 𝑏 = −1.

Table 5
quantile

p

0.001 -313.
0.010 -66.021
0.990 1.628
0.999 1.961

14

Figure 11 shows the same results with a much wider range of outcomes. The numeric
approximation produces non-zero answers only down to about -316.
a = 1.
b = -1.
fz = ss.levy_stable(a, b)
ft_obj = FourierTools(

chf=make_levy_chf(a, b),
fz=fz
)

ft_obj.invert(log2=12, x_min=-1000, bs=0.25)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

1000 750 500 250 0
Outcome, x

0.0

0.1

0.2

Density
Fourier
exact

1000 750 500 250 0
Outcome, x

10 9

10 7

10 5

10 3

10 1

Log density
Fourier
exact

1000 750 500 250 0
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.0 0.5 1.0 1.5 2.0
frequency

10 4

10 2

100

A
m

pl
itu

de
 |f

t|

Amplidude

1000 750 500 250 0
Outcome, x

10 9

10 7

10 5

10 3

10 1

101
log sf and cdf

20

10

0

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 11: Cauchy stable distribution with 𝑎 = 1 and 𝑏 = −1 with a wider 𝑥 range.

Figure 12 shows a thinner tailed, positively skewed example.
a = 1.75
b = 0.3
fz = ss.levy_stable(a, b)
ft_obj = FourierTools(

chf=make_levy_chf(a, b),
fz=fz

)
ft_obj.invert(log2=12, x_min=-50, x_max=100)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

15

50 0 50
Outcome, x

0.0

0.1

0.2

Density
Fourier
exact

50 0 50
Outcome, x

10 7

10 5

10 3

10 1

Log density
Fourier
exact

50 0 50
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 5 10
frequency

10 256

10 188

10 120

10 52

1016
A

m
pl

itu
de

 |f
t|

Amplidude

50 0 50
Outcome, x

10 7

10 5

10 3

10 1

101
log sf and cdf

0

25

50

75

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 12: Stable distribution with 𝑎 = 1.75 and 𝑏 = 0.3.

Figure 12 shows a thicker tailed, positively skewed example. This example exhibits
considerable aliasing to the right because 𝑥min is too small. This is decomposed in
Figure 14, especially the lower right plot.
log2 = 12
a = 0.75
b = 0.3
fz = ss.levy_stable(a, b)
ft_obj = FourierTools(

chf=make_levy_chf(a, b),
fz=fz

)
ft_obj.invert(log2=log2, x_min=-100, x_max=1000)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

16

0 250 500 750
Outcome, x

0.0

0.1

0.2

0.3

Density
Fourier
exact

0 250 500 750
Outcome, x

10 7

10 5

10 3

10 1

Log density
Fourier
exact

0 250 500 750
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.0 0.5 1.0 1.5
frequency

10 2

10 1

100
A

m
pl

itu
de

 |f
t|

Amplidude

0 250 500 750
Outcome, x

10 7

10 5

10 3

10 1

101
log sf and cdf

4

2

0

2

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 13: Stable distribution with 𝑎 = 0.75 and 𝑏 = 0.3.

ft_obj.plot_wraps([-1, 1,2], add_tail=True);

0 250 500 750 1000
Outcome, x

0.0

0.1

0.2

0.3

D
en

sit
y

Cumulative aliasing

100 1900
Outcome, x

0.0

0.1

0.2

0.3

D
en

sit
y

Incremental aliasing
Fourier
-1
-1
1

1
2
2
exact

0 250 500 750 1000
Outcome, x

10 5

10 4

10 3

10 2

10 1

Lo
g

de
ns

ity

Cumulative - log scale
Fourier
-1
1

2
exact

100 1900
Outcome, x

10 5

10 3

10 1

Lo
g

de
ns

ity

Incremental - log scale

Figure 14: Decomposition of aliasing for Figure 15.

Figure 15 uses the same distribution with a much tighter range [−10, 10) vs. [−100, 1000).
This allows a much smaller 𝑏 which resolves the shape of the mode at 0 better, but suffers

17

more aliasing on both sides Figure 16. The aliasing can be partially addressed using
Simpson’s rule, see Section 4.6.
a = 0.75
b = 0.3
fz = ss.levy_stable(a, b)
ft_obj2 = FourierTools(

chf=make_levy_chf(a, b),
fz=fz

)
df = ft_obj2.invert(log2=log2, x_min=-10, x_max=10, s=5e-2)
print(ft_obj2.describe())
ft_obj2.compute_exact()
ft_obj2.plot()

FourierTools(levy_stable(0.75, 0.3), loc=0.0, scale=1)
n=4096, x_min=-10, x_max=10, bs=0.00488

10 5 0 5
Outcome, x

0.0

0.1

0.2

0.3

Density
Fourier
exact

10 5 0 5
Outcome, x

10 3

10 2

10 1

100
Log density

Fourier
exact

10 5 0 5
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 25 50 75 100
frequency

10 46

10 33

10 20

10 7

A
m

pl
itu

de
 |f

t|

Amplidude

10 5 0 5
Outcome, x

10 3

10 2

10 1

100

101
log sf and cdf

75

50

25

0

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 15: Stable distribution with 𝑎 = 0.75 and 𝑏 = 0.3, with small range.

ft_obj2.plot_wraps([-1, 1], add_tail=True);
ft_obj2.last_fig.axes[1].legend().set(visible=False);

18

10 5 0 5 10
Outcome, x

0.0

0.1

0.2

0.3

D
en

sit
y

Cumulative aliasing

10
Outcome, x

0.0

0.1

0.2

0.3

D
en

sit
y

Incremental aliasing

10 5 0 5 10
Outcome, x

10 2

10 1

Lo
g

de
ns

ity

Cumulative - log scale

Fourier
-1

1
exact

10
Outcome, x

10 3

10 2

10 1
Lo

g
de

ns
ity

Incremental - log scale

Figure 16: Decomposition of aliasing for Figure 15.

3.7 Tweedie with Aggregate

This example uses the Tweedie distribution, a Poisson-gamma compound. It is a member
of the power-variance function family of exponential distributions and appears commonly
as a mixed error distribution in GLM modeling, see Jørgensen (1987) and McCullagh and
Nelder (2019). First, create a Tweedie from its definition with gamma shape a=20 and
scale sc=1, and expected frequency en=20 as using aggregate. The expected mean is
200. The example also illustrates using an Aggregate object in place of a scipy.stats
frozen distribution as the reference. Table 6 creates the Aggregate object and displays
distribution statistics.
a = 20.
sc = 1.
en = 10
fz = build(f'agg Tw {en} claims sev {sc} * gamma {a} poisson')
qd(fz.describe.iloc[:, [0,3,6]])

Table 6: Statistics for Tweedie distribution.

Table 6
E[X] CV(X) Skew(X)

X

Freq 10 0.316 0.316
Sev 20.000 0.224 0.447

19

E[X] CV(X) Skew(X)
X

Agg 200. 0.324 0.339

The Tweedie has multiple parameterizations. aggregate provides a (horrible, sorry)
function tweedie_convert to translate between them.
from aggregate import tweedie_convert
tc = tweedie_convert(�=en, �=a, �=sc)
qd(tc)

Table 7: Alternative parameterizations of the Tweedie.

Table 7
value

� 200
p 1.048
�^2 16.317
� 10
� 20
� 1
tw_cv 0.324
sev_m 20
sev_cv 0.224
p0 4.54e-05

aggregate also provides a tweedie keyword to create an Aggregate directly. It takes the
parameters mean, 𝑝, and dispersion (𝜎2) parameters. This version is updated numerically
and Table 8 compares the expected and numerical mean, CV, and skewness, showing a
very close match.
mu = tc.�
p = tc.p
dispersion = tc['�^2']
tweedie_agg = build(f'agg TwKW tweedie {mu} {p} {dispersion}')
qd(tweedie_agg.describe)

Table 8: Tweedie in aggregate using the tweedie keyword and alternative parameteriza-
tion.

Table 8
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Est Skew(X)

X

Freq 10 NaN NaN 0.316 NaN NaN 0.316 NaN
Sev 20.000 20.000 2.2204e-15 0.224 0.224 5.0862e-07 0.447 0.447

20

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Est Skew(X)
X

Agg 200. 200. 8.8818e-15 0.324 0.324 2.422e-08 0.339 0.339

Since Aggregate objects have cdf and related methods they can be used as frozen objects
and passed into FourierTools. The manual ch f is easy to derive from those of the
Poisson and gamma. Figure 17 shows a good match.
tweedie_chf = lambda t: np.exp(en * ((1 - sc * 1j * t) ** -a - 1))
ft_obj = FourierTools(

chf=tweedie_chf,
fz=fz

)
ft_obj.invert(log2=12, x_min=0, bs=1/4)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

0 500 1000
Outcome, x

0.000

0.002

0.004

0.006

Density
Fourier
exact

0 500 1000
Outcome, x

10 22

10 17

10 12

10 7

10 2

Log density
Fourier
exact

0 500 1000
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 1 2
frequency

10 7

10 5

10 3

10 1

A
m

pl
itu

de
 |f

t|

Amplidude

0 500 1000
Outcome, x

10 22

10 17

10 12

10 7

10 2

log sf and cdf

10

5

0

5

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 17: Tweedie distribution, mean 200.

Users are sometimes surprised at the form of the Tweedie. As 𝑝 ↓ 1 it becomes a continuous
approximation to a Poisson distribution, except for the mass at zero. This leads to a wildly
oscillating density. Figure 18 shows the FFT method is up to the task! It also illustrates
the use of FourierTools without passing a distribution object. In this case, we know
from the description of the Tweedie that the mean is 20 and that the distribution will be
close a Poisson with the same mean. That is enough to estimate an appropriate bucket
size. The example uses a very small bucket size to capture the details of the density.

21

en = 20.
p = 1.001
a = (2 - p) / (p - 1)
sc = 1 / a
tweedie_chf = lambda t: np.exp(en * ((1 - sc * 1j * t) ** -a - 1))
ft_obj = FourierTools(

chf=tweedie_chf,
fz=None

)
ft_obj.invert(log2=16, x_min=0, bs=1/1024)
ax = ft_obj.df.p.plot(figsize=(4,2.75), lw=.5, ls='-')

0 10 20 30 40 50 60
x

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

Figure 18: Tweedie distribution with mean 20 and p close to 1, a continuous approximation
to the Poisson—computed with FFTs!

3.8 Compound Poisson with discrete severity
This section shows how to create a compound Poisson with a discrete severity

Pr(𝑋 = 𝑥𝑘) = 𝑝𝑘.

When the expected claim count equals 𝜆, the compound ch f is given by

𝜙(𝑡) = E[𝑒𝑖𝑡𝐴]
= E[E[𝑒𝑖𝑡𝐴 ∣ 𝑁]]
= E[E[𝑒𝑖𝑡𝑋]𝑁]
= E[𝑒𝑁 log E[𝑒𝑖𝑡𝑋]]
= 𝑀𝑁(log(𝜙𝑋(𝑡)))
= exp(𝜆(𝜙𝑋(𝑡) − 1)).

This formula is implemented as chf in the code below.

Here is an example with 𝜆 = 2, outcomes 1, 2, 10 with probabilities 5/8, 1/4, 1/8. Since
all jumps are integers 𝑏 = 1 is appropriate. Table 9 shows the compound statistics.

22

log2 = 7
outcomes and probabilities
xs = np.array([1, 2, 10])
ps = np.array([.625, .25, .125])
en = 2.
build aggregate object
fz = build(f'agg eg2 {en} claims dsev {xs} {ps} poisson',

bs=1, padding=0, log2=log2)
check moments
qd(fz.describe)

Table 9: Discrete severity compound statistics.

Table 9
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Est Skew(X)

X

Freq 2 NaN NaN 0.707 NaN NaN 0.707 NaN
Sev 2.375 2.375 0 1.226 1.226 0 2.176 2.176
Agg 4.750 4.750 -8.8818e-16 1.119 1.119 2.6645e-15 1.700 1.700

Figure 19 shows the approximation. The distribution is multimodal and it is is fit very
precisely over a wide range of outcomes.
def chf(t):

sev_phi = ps @ np.exp(1j * (np.atleast_2d(t) * np.atleast_2d(xs).T))
return np.where(t==0, 1., np.exp(en * (sev_phi - 1)))

ft_obj = FourierTools(
chf=chf,
fz=fz

)
ft_obj.discrete = False
ft_obj.invert(log2=log2, x_min=0, x_max=1<<log2)
print(ft_obj.describe())
ft_obj.compute_exact()
dfe = ft_obj.df_exact
ft_obj.plot()

23

0 50 100
Outcome, x

0.00

0.05

0.10

0.15

Density
Fourier
exact

0 50 100
Outcome, x

10 23

10 18

10 13

10 8

10 3

Log density
Fourier
exact

0 50 100
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.00 0.25 0.50
frequency

10 1

100
A

m
pl

itu
de

 |f
t|

Amplidude

0 50 100
Outcome, x

10 23

10 18

10 13

10 8

10 3

log sf and cdf

1.5

1.0

0.5

0.0

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 19: Discrete aggregate fit well with FFT inversion.

3.9 Unwrapping with Aggregate

The Aggregate class includes an unwrap method to shift a compound distribution to the
correct location. This is helpful when working with large expected claim counts with a
bounded severity. Figure 20 illustrates for a compound, Poisson claim count mean 250
and severity uniform on 1, 2, … , 11. The mean is 1500 = 250 × (1 + 11)/2, the CV 7%,
and standard deviation about 105, Table 10. The distribution is recreated using only
29 = 512 buckets and 𝑏 = 1.

Without shifting the pmf (Figure 20 left) appears to produce nonsense output. Slicing
and rearranging produces the correct output (right).
en = 250
apo = build(f'agg PoBig {en} claims dsev[1:11] poisson',

bs=1, log2=9, padding=0)

fig, axs = plt.subplots(1, 2, figsize=(4.0, 2.0),
constrained_layout=True, sharey=True)

ax0, ax1 = axs.flat

apo.density_df.p_total.plot(ax=ax0, label='aggregate')
ax0.set(title='Raw aggregate', xlabel='x', ylabel='pmf')

ans = apo.unwrap(p=1e-1)
ans.y.plot(ax=ax1)
ax1.set(title='Unwrapped aggregate', xlabel='x');

24

0 200 400
x

0.001

0.002

0.003

pm
f

Raw aggregate

1400 1600
x

Unwrapped aggregate

Figure 20: Unwrapping an aggregate distribution using Aggregate.unwrap.

qd(apo.describe)

Table 10: Aggregate distribution statistics.

Table 10
E[X] Est E[X] Err E[X] CV(X) Est CV(X) Err CV(X) Skew(X) Est Skew(X)

X

Freq 250 NaN NaN 0.063 NaN NaN 0.063 NaN
Sev 6 6.000 -3.3307e-16 0.527 0.527 1.1102e-15 0 -1.7975e-15
Agg 1,500 289. -0.808 0.071 0.608 7.507 0.080 -0.403

4 Technical Background

4.1 Context and literature
Complaint. It is the most natural thing in the world to decompose an
oscillating electrical signal into sines and cosines of various frequencies via the
Fourier transform - but probabilities, no. Basically, these are positive numbers
adding up to 1, and what have sines and cosines to do with that? Indeed, in
many applications done first by Fourier, a simpler, more understandable proof
may emerge upon taking Fourier away. Still, the Fourier transform is a very
effective, sometimes indispensable technical tool in much of our business here.
(McKean 2014)

Henry P. McKean, Jr. (1930 – 2024) was an American mathematician at the
Courant Institute in New York University. He co-authored the famous book
“Diffusion processes and their sample paths” with Kioshi Itô.

Fourier transforms and the Fast Fourier Transforms (FFTs) are magic and mysterious and
their application to probability is odd (McKean quote) yet extremely effective�providing
proofs of the central limit and Lévy-Khinchin theorems and a practical way to add
(convolve) distributions, among other uses.

There are many treatments of fts and FFTs in the literature. Brigham (1988) is a very
helpful reference providing great diagrams to show what is going on; Section 4.4 follows

25

it closely. He develops the continuous and discrete transforms together and explains
the connection in Section 6. He refers back to Papoulis (1962), who has an interesting
appendix on distributions. Körner (2022) is good for historical context and details such
as swapping the order of integration. Terras (2013) is good for mathematical context.
Grafakos (2008) provides a modern mathematical view, developed further in Grafakos
(2009). He has also recently released Grafakos (2024). Going hardcore, try Hewitt and
Ross (2012).

Mildenhall (2024) provides technical background on using FFTs to compute aggregate
distributions whereas this article mostly focuses on simpler parametric distributions such
as the gamma or normal. Figures equivalent to 1 and 2 in the paper are recreated here
in Section 3.3 and Figure 8. The Aggregate help contains similar examples and more
background, again focused on aggregate distributions.

Notation. We use 𝑏 for the discretization bucket size, but it is often written ℎ in other
references.

4.2 Characteristic functions and Fourier transforms
The ch f 𝜙 of random variable 𝑋 having cdf 𝐹 is given by

𝜙(𝑡) = E[exp(𝑖𝑡𝑋)] = ∫
∞

−∞
𝑒𝑖𝑡𝑥 𝑑𝐹(𝑥). (3)

If 𝑋 is continuous and has a density 𝑓 this is the same as

𝜙(𝑡) = ∫
∞

−∞
𝑒𝑖𝑡𝑥𝑓(𝑥) 𝑑𝑥.

Equation 3 also works when 𝑋 is discrete or mixed. The ch f is related to the moment
generating function 𝑀(𝑡) = E[exp(𝑡𝑥)] = 𝜙(−𝑖𝑡). It has the advantage of always existing.
The Cauchy distribution, which is thick-tailed on the left and the right, has no MGF.

The Fourier transform (ft) of a distribution function 𝐹 is usually written ̂𝐹 and is given by

̂𝐹 (𝑡) = ∫
∞

−∞
𝑒−2𝜋𝑖𝑡𝑥 𝑑𝐹(𝑥). (4)

Some authors omit the scaling factor 2𝜋 which introduces constants to the integrals. The
ft is related to the ch f by

̂𝐹 (𝑡) = 𝜙(−2𝜋𝑡).

The ch f and ft both contain the same information as the distribution function. The
inverse transform

𝐹(𝑡) = ∫
∞

−∞
𝑒2𝜋𝑖𝑡𝑥 ̂𝐹 (𝑡) 𝑑𝑡. (5)

is valid at points where 𝐹 is continuous.

The ft is useful in probability theory because it translates (difficult) convolution into (easy)
multiplication. Computing the distribution of a sum of independent random variables
(convolution of distributions) is complicated because you have to consider all different

26

https://www.cambridge.org/core/journals/annals-of-actuarial-science/article/aggregate-fast-accurate-and-flexible-approximation-of-compound-probability-distributions/1BF9A534D944D983B1D780C60885F065
https://aggregate.readthedocs.io/en/latest/5_technical_guides/5_x_numerical_methods.html#numerical-methods-and-fft-convolution

ways an outcome can be split. The ft works like exponentiation, which turns (difficult)
multiplication into (easy) addition:

𝑒𝑎 × 𝑒𝑏 = 𝑒𝑎+𝑏.

Likewise, the ft translate convolution of distributions into multiplication of fts. If 𝑋𝑖 are
independent random variables, 𝑋 = 𝑋1 + 𝑋2, and 𝐹𝑋 is the distribution of 𝑋, then

̂𝐹𝑋1+𝑋2
(𝑡) = ̂𝐹𝑋1

(𝑡) × ̂𝐹𝑋2
(𝑡),

where the right-hand side is a product of functions. Thus we can convolve as:

𝑋, 𝑌
+
−→ 𝑋 + 𝑌

ft ↓ ↑ ift
̂𝐹𝑋, ̂𝐹𝑌

×
−→ ̂𝐹𝑋+𝑌.

Of course, this is only useful if it is easy to compute the ft and its inverse—which is where
FFTs come in. The FFT is an extremely quick way to compute discrete fts.

4.3 Example Fourier transform
Define

𝑓(𝑥) =
⎧{
⎨{⎩

𝐴 𝑥 ∈ (−𝑥0, 𝑥0)
𝐴/2 𝑥 = −𝑥0, 𝑥0

0 𝑥 ∉ [−𝑥0, 𝑥0]
.

Then
̂𝑓(𝑡) = ∫

∞

−∞
𝑒−2𝜋𝑖𝑥𝑡𝑓(𝑥) 𝑑𝑥

= ∫
𝑥0

−𝑥0

𝐴𝑒−2𝜋𝑖𝑥𝑡 𝑑𝑥

= −𝐴𝑒−2𝜋𝑖𝑥𝑡

−2𝜋𝑖𝑡
∣
𝑥0

−𝑥0

= 𝐴sin 2𝜋𝑡𝑥0
𝜋𝑡

.

The zeros of the ft are at (1/2𝑥0)ℤ as 𝑥0 varies. As 𝑓 becomes more spread (larger 𝑥0) so
̂𝑓 becomes more concentrated around 0. In the simple case 𝐴 = 1 and 𝑥0 = 𝑎/2𝜋

̂𝑓(𝑡) = sin 𝑎𝑡
𝜋𝑡

.

These properties are illustrated in Figure 21. Imagining the limit as 𝑥0 → ∞ makes it
clear that the 𝛿 function (Section 4.7) and the constant function are transforms. This
example is important because 𝑓 ∈ 𝐿1(ℝ) (is absolutely integrable) but ̂𝑓 is not because
| ̂𝑓 | is not integrable, which shows that the ft is not a mapping from 𝐿1(ℝ) → 𝐿1(ℝ).
fig, axs = plt.subplots(1, 2, figsize=(2 * 3, 2.25),

constrained_layout=True)
ax0, ax1 = axs.flat

27

xs = np.linspace(-3, 3, 1001)
ts = np.linspace(-5, 5, 1001)

for x0 in [1, .5, .25,][::-1]:
A = 1
ys = np.where(np.abs(xs) <= x0, A, 0)
ax0.plot(xs, ys, lw=1, drawstyle='steps-mid', label=f'width {2 * x0}')
fty = np.where(ts==0, A * 2 * x0,
A * np.sin(2 * np.pi * x0 * ts) / (np.pi * ts))

ax1.plot(ts, fty, label=f'x0 = {x0}', lw=1)
ax0.legend()
ax1.legend()
ax0.set(title='Function: space or outcome', xlabel='x', ylabel='$f(x)$')
ax1.set(title='Transform: frequency', xlabel='t', ylabel='$\\hat f(x)$');

2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

(
)

Function: space or outcome
width 0.5
width 1.0
width 2

4 2 0 2 4
0.5

0.0

0.5

1.0

1.5

2.0

(
)

Transform: frequency
x0 = 0.25
x0 = 0.5
x0 = 1

Figure 21: Function (left) and its ft (right). As the function becomes more concentrated
(peaked), the ft becomes more diffuse, and vice versa, illustrating the uncertainty principle.

4.4 Continuous, discrete and fast transforms
There are three things going on when moving from a continuous ft function to discrete
FFT:

1. Replacing continuous functions with discrete samples by sampling.
2. Truncate limits in the integrals defining the ft to create finite samples.
3. Computing the fts using the Fast Fourier transform algorithm.

A continuous distribution 𝐹 can be approximated with a step distribution that takes the
constant value (𝐹((𝑘−1/2)𝑏)−𝐹((𝑘+1/2)𝑏))/𝑏 on the interval [(𝑘−1/2)𝑏)−𝐹((𝑘+1/2)𝑏)).
By Taylor series,

𝐹((𝑘 − 1/2)𝑏) − 𝐹((𝑘 + 1/2)𝑏)
𝑏

≈ 𝑓(𝑘𝑏).

Here 𝑏 is the discretization step-size, which we call the bucket size, and 𝑘 ∈ ℤ. Discrete
approximations arise naturally when estimating 𝐹 from a finite sample, for example.

28

Likewise, a discrete Fourier transform is a discrete approximation to the continuous fts,
formed by sampling it at evenly spaced points. The DFT is a sequence, rather than a
function. It retains the convolution property of fts. For real valued vectors, DFTs are
sometimes called discrete cosine transforms (DCT). Sampling can arise from replacing an
integral with its Riemann sum approximation.

The DFT is a sequence. To be practical a computer, we can only work with finite length
vectors, leading to the second step: truncation. Truncation comes about by replacing
infinite limits in an integral by finite limits. This is justified because the integrand is very
small.

The finite DFT is the least mysterious things we deal with: it is given by simple matrix
multiplication: a 𝑛 × 1 sample vector is multiplied by the 𝑛 × 𝑛 matrix (𝜔𝑖𝑗)𝑖,𝑗, 𝜔 =
exp(−2𝜋𝑖/𝑛), of 𝑛th roots of unity.

Third, it is the Fast Fourier transform that makes this a practical approach. The trick
with FFTs is how they are compute DFTs, exploiting various symmetries in cunning way.
The details are explained in many references, but see Mildenhall (2024) for one in an
actuarial context.

The first two steps are independent of the FFT implementation. General usage can blur
the distinction between discrete fts and their computation, and use FFT as a catchall for
both.

4.5 Sampling: from continuous to discrete transforms
This section is key to explaining Section 1. We want to create a sample from a distribution
by using the FFT to invert a sample of the continuous ft. The samples are all equally
spaced, so start by supposing the distribution will be sampled using 𝑛 buckets of size 𝑏.
How to select 𝑛 and 𝑏 is described later. Set 𝑃 = 𝑛𝑏. To start, we can evaluate 𝑓(𝑘𝑏)
using the continuous ift. Let’s see what happens if we try to evaluate that continuous

29

integral by discretizing and truncating.

𝑓(𝑘𝑏) = ∫
∞

−∞
𝑒2𝜋𝑖𝑘𝑏𝑡 ̂𝑓(𝑡) 𝑑𝑡 definition

≈ 1
𝑃

∑
𝑙∈ℤ

𝑒2𝜋𝑖𝑘𝑏(𝑙/𝑛𝑏) ̂𝑓(𝑙/𝑃) discretize, 1/𝑃

≈ 1
𝑃

𝑛/2−1

∑
𝑙=−𝑛/2

𝑒2𝜋𝑖
𝑛 𝑘𝑙 ̂𝑓(𝑙/𝑃) truncate

= 1
𝑃

𝑛/2−1

∑
𝑙=−𝑛/2

𝑒
2𝜋𝑖
𝑛 𝑘𝑙 ∫

∞

−∞
𝑒−2𝜋𝑖𝑥(𝑙/𝑃)𝑓(𝑥) 𝑑𝑥 definition

≈ 1
𝑃

𝑛−1
∑
𝑙=0

𝑒
2𝜋𝑖
𝑛 𝑘𝑙𝑏 ∑

𝑗∈ℤ
𝑒−2𝜋𝑖(𝑗𝑏)(𝑙/𝑛𝑏)𝑓(𝑗𝑏) discretize, 𝑏

= 1
𝑛

𝑛−1
∑
𝑙=0

𝑒
2𝜋𝑖
𝑛 𝑘𝑙 ∑

𝑗∈ℤ
𝑒− 2𝜋𝑖

𝑛 𝑗𝑙𝑓(𝑗𝑏) simplify

= 1
𝑛

∑
𝑗∈ℤ

𝑓(𝑗𝑏)
𝑛−1
∑
𝑙=0

𝑒
2𝜋𝑖
𝑛 (𝑘−𝑗)𝑙 rearrange

= ∑
𝑚∈ℤ

𝑓(𝑘𝑏 + 𝑚𝑛) geometric series

= 𝑓𝑃(𝑘𝑏) periodic version.

The first three lines relate 𝑓(𝑘𝑏) to the IFFT (third step). Notice it is just the matrix
product of the 𝑛 × 𝑛 matrix (𝜔𝑘𝑙)𝑘,𝑙 and the 𝑛 × 1 vector (̂𝑓(𝑙/𝑃))𝑙. Here 𝜔 = exp(2𝜋𝑖/𝑛)
is an 𝑛th root of unity, meaning 𝜔𝑛 = 1. The fast part converts the matrix product you
expect to take of the order of 𝑛2 operations into one taking only 𝑛 log2(𝑛). The rest of
the derivation figures out what the IFFT actually computes, which turns out to be the
periodic version of 𝑓 (last row) defined by

𝑓𝑃(𝑥) = ∑
𝑘

𝑓(𝑥 + 𝑘𝑃).

If 𝑓 actually has finite support contained in [0, 𝑃), then 𝑓𝑃 = 𝑓. If that is not the case
there will be aliasing, a wrapping spill-over of values.

The logic of the each step is as follows. The two discretize steps use Riemann sum, with
𝑑𝑥 equal to 1/𝑃 and 𝑏 respectively. The truncate step is justified by ̂𝑓(𝑡) falling off quickly
𝑡 → ∞. The rearrange step swaps a finite and infinite sum, which is always legitimate
(finite sum of lim is lim of sums). The geometric series step uses two properties of roots
of unity. First,

1 + 𝜔 + ⋯ + 𝜔𝑛−1 = 1 − 𝜔𝑛

1 − 𝜔
= 0.

Second, if 1 ≤ 𝑙 ≤ 𝑛 − 1, then (𝜔𝑙)𝑛 = (𝜔𝑛)𝑙 = 1 and

𝜔𝑙 + 𝜔2𝑙 + ⋯ + 𝜔(𝑛−1)𝑙 = 1 − 𝜔𝑙𝑛

1 − 𝜔
= 0.

Third, if 𝑙 = 𝑗𝑛, then 𝜔𝑙 = (𝜔𝑛)𝑗 = 1 and

1 + 𝜔𝑙 + ⋯ + 𝜔(𝑛−1)𝑙 = 1 + ⋯ + 1 = 𝑛.

30

While both the ft and ift are discretized, truncation applies only to the first ift step. The
ft wraps and produces aliasing in the penultimate step, which is still over an infinite sum.

It is an important fact, known as Poisson’s Summation Formula, that 𝑓 and 𝑓𝑃 have the
same ft:

̂𝑓(𝑙/𝑃) ∶ = ∫
∞

−∞
𝑒−2𝜋𝑖𝑥(𝑙/𝑃) 𝑓(𝑥) 𝑑𝑥

= ∑
𝑘∈ℤ

∫
(𝑘+1)𝑃

𝑘𝑃
𝑒−2𝜋𝑖𝑥(𝑙/𝑃) 𝑓(𝑥) 𝑑𝑥

= ∑
𝑘∈ℤ

∫
𝑃

0
𝑒−2𝜋𝑖(𝑥+𝑘𝑃)(𝑙/𝑃) 𝑓(𝑥 + 𝑘𝑃) 𝑑𝑥

= ∫
𝑃

0
𝑒−2𝜋𝑖𝑥(𝑙/𝑃) ∑

𝑘∈ℤ
𝑓(𝑥 + 𝑘𝑃) 𝑑𝑥 !!

= ∫
𝑃

0
𝑒−2𝜋𝑖𝑥(𝑙/𝑃) 𝑓𝑃(𝑥) 𝑑𝑥

= ̂𝑓𝑃(𝑙/𝑃).

The step marked !! requires 𝑘𝑃 times the argument of ̂𝑓, i.e., 𝑙/𝑃, to be an integer, hence
the choice of argument in the first line. It then follows from the Fourier inversion formula
for series that

𝑓𝑃(𝑥) = ∑
𝑙

𝑓(𝑥 + 𝑙𝑃) = ∑
𝑙

𝑒2𝜋𝑖𝑙𝑥 ̂𝑓𝑃(𝑙) = ∑
𝑙

𝑒2𝜋𝑖𝑙𝑥 ̂𝑓(𝑙).

The formulaic derivation as the start of this section is illustrated nicely in Figure 22 from
Brigham (1988). The steps are:

a. Start with ℎ (our 𝐹) on the left and its ft 𝐻 (our ̂𝐹) on the right.
b. Sample using the shah-function, a sequence of impulses, Section 4.9. This function

is self-dual.
c. The third step is the product of the first two.
d. Truncate by multiplying by a rectangular function on the left.
e. Product of c and d.
f. Sample on the ft side.
g. Product of e and f.

4.6 Simpson’s Rule
The accuracy of the FFT method can be improved by using Simpson’s rule in the Riemann
sum approximations, an idea suggested by Wang and Zhang (2008). This is useful for the
stable distribution, where the approximation can be poor in the tails, see the examples
in Section 3.6. To start, assume 𝑥min = 0. Recall 𝑃 = 𝑛𝑏 and the maximum sampling
frequency is 1/𝑏. The standard approach uses the simplest approximation to the integral

𝑓(𝑘𝑏) = ∫
∞

−∞
𝑒2𝜋𝑖𝑘𝑏𝑡 ̂𝑓(𝑡) 𝑑𝑡 ≈ 1

𝑃

𝑛/2−1

∑
𝑙=−𝑛/2

𝑒2𝜋𝑖𝑘𝑙/𝑛 ̂𝑓(𝑙/𝑃).

The sum is then computed as the IFFT of the vector (̂𝑓(𝑙/𝑃))𝑙. This approximation
corresponds to taking the left-hand value in each sub-interval of the Riemann sum. Equally,

31

Figure 22: Graphical development of the discrete Fourier transform (Brigham 1988)

32

we could take the right-hand value, or average the two (trapezoid rule). Or, we could use
Simpson’s rule that averages the left, middle, and right values, estimating

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≈ 𝑏 − 𝑎

6
(𝑓(𝑎) + 4𝑓((𝑎 + 𝑏)/2) + 𝑓(𝑏)).

This can be used in the derivation, after making adjustments both before and after taking
the IFFT. In the general case, where 𝑥min ≠ 0, we are trying to calculate for 𝑘 = 0, … , 𝑛

𝑓ℎ(𝑥min + 𝑘𝑏) ≈ 1
𝑃

𝑛/2−1

∑
𝑙=−𝑛/2

𝑒2𝜋𝑖(𝑥min +𝑘𝑏)(𝑙+ℎ)/𝑛𝑏 ̂𝑓(𝑙/𝑃)

= 𝑒2𝜋𝑖𝑥min ℎ/𝑃𝑒2𝜋𝑖𝑘ℎ/𝑛 1
𝑃

𝑛/2−1

∑
𝑙=−𝑛/2

𝑒2𝜋𝑖𝑘𝑙/𝑛 (𝑒2𝜋𝑖𝑥min 𝑙/𝑃 ⋅ ̂𝑓(𝑙/𝑃))

= 𝑒2𝜋𝑖𝑥min ℎ/𝑃 (𝑒2𝜋𝑖𝑘ℎ/𝑛 ⋅ IFFT (𝑒2𝜋𝑖𝑥min 𝑙/𝑃 ⋅ ̂𝑓(𝑙/𝑃)))

with ℎ = 0, 1/2, 1 corresponding to left, middle, and right hand Simpson’s terms. In the
last row, the first term on the right only depends on ℎ. The next term is a component-
by-component product of vectors depending on 𝑘. Likewise, the argument to IFFT is a
component-by-component product of vectors indexed by 𝑙. The three estimates 𝑓0, 𝑓1/2, 𝑓1
are then weighted down as vectors

𝑓𝑠 ≈ 1
6

(𝑓0 + 𝑓1/2 + 𝑓1)

to obtain the Simpson inverse approximation. Using Simpson’s rule produces materially
estimates for the stable, as Figure 23 shows.
a = 1.75
b = .25
log2 = 12
x_min = -200
fz = ss.levy_stable(a, b, loc=0)# x_min / 2)
ft_obj = FourierTools(

chf=make_levy_chf(a, b),
fz=fz

)
ft_obj.invert(log2=log2, x_min=x_min, x_max=x_min + (1 << log2) / 8)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()
ft_obj.invert_simpson()
ft_obj.plot_simpson(ylim=1e-8)

4.7 Dirac delta functions
This subsection and the remainder of this section provides more general background on
fts.

33

200 0 200
Outcome, x

0.0

0.1

0.2

Density
Fourier
exact

200 0 200
Outcome, x

10 9

10 7

10 5

10 3

10 1

Log density
Fourier
exact

200 0 200
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 1 2 3 4
frequency

10 102

10 75

10 48

10 21

106

A
m

pl
itu

de
 |f

t|

Amplidude

200 0 200
Outcome, x

10 9

10 7

10 5

10 3

10 1

101
log sf and cdf

0

10

20

30

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

(a) Inverting the ft to obtain pdf and cdf.

200 100 0 100 200 300
x

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
p
basic
simpson

(b) Comparison of basic and Simpson method density, showing considerable improvement in the
tails. The orange exact p line is limited by the numerical implementation on the right.

Figure 23: Stable distribution example using Simpson’s rule method.

34

It is helpful to have a “function” with the properties

𝛿(𝑡 − 𝑡0) = 0, ∀𝑡 ≠ 𝑡0

∫
∞

−∞
𝛿(𝑡 − 𝑡0) 𝑑𝑡 = 1.

Such functions emerge as limits. They are called impulse or delta functions. Papoulis
(1962) discusses two other properties: they can be a limit of functions satisfying

∫
∞

−∞
𝑓𝑛(𝑡) 𝑑𝑡 = 1 lim

𝑛→∞
𝑓𝑛(𝑡) = 0 ∀𝑡 ≠ 0,

or have the property that
∫

∞

−∞
𝛿(𝑡)𝜙(𝑡) 𝑑𝑡 = 𝜙(0).

The delta function 𝛿(𝑡) is a so-called distribution assigning to the test function 𝜙(𝑡)
the number 𝜙(0). Test functions can be continuous with finite support and continuous
derivatives of all order. 𝛿 defines a continuous linear functional on the set of test
functions that is sometimes written using inner-product notation

(𝛿, 𝜙) = ∫
∞

−∞
𝛿(𝑡)𝜙(𝑡) 𝑑𝑡 = 𝜙(𝑡).

Because of the range of the integral, we can change variables to see

∫
∞

−∞
𝛿(𝑡 − 𝑡0)𝜙(𝑡) 𝑑𝑡 = ∫

∞

−∞
𝛿(𝑠)𝜙(𝑠 + 𝑡0) 𝑑𝑠 = 𝜙(𝑡0)

which Brigham calls the sifting property, as in sifting out a single value—not shifting!
Similarly

𝛿(𝑎𝑡) = 1
|𝑎|

𝛿(𝑡).

The product of 𝛿 and a function ℎ continuous at 𝑡 = 𝑡0 is

(𝛿ℎ, 𝜙) = (𝛿, ℎ𝜙).

You have problems with the associativity:

(1
𝑥

𝑥) 𝛿 = 𝛿

but
1
𝑥

(𝑥𝛿) = 1
𝑥

0 = 0.

(Terras 2013, p. 6). The convolution is

𝛿1(𝑡 − 𝑡1) ⋆ 𝛿2(𝑡 − 𝑡2) = 𝛿(𝑡 − (𝑡1 + 𝑡2)).

Given a sequence 𝑔𝑛 of distributions, if there is a distribution 𝑔 so that for all test functions
𝜙

lim
𝑛→∞

∫
∞

−∞
𝑔𝑛(𝑡)𝜙(𝑡) 𝑑𝑡 = ∫

∞

−∞
𝑔(𝑡)𝜙(𝑡) 𝑑𝑡

35

then say
𝑔(𝑡) = lim

𝑛→∞
𝑔𝑛(𝑡).

Likewise with ordinary functions 𝑓𝑛, if

lim
𝑛→∞

∫
∞

−∞
𝑓𝑛(𝑡)𝜙(𝑡) 𝑑𝑡 = 𝜙(0)

for all test functions, then
𝛿(𝑡) = lim

𝑛→∞
𝑓𝑛(𝑡).

The Riemann-Lebegue lemma says that if 𝜙 is absolutely integrable on (𝑎, 𝑏), where 𝑎, 𝑏
are finite or infinite constants, then

lim
𝜔→∞

∫
𝑏

𝑎
𝑒−2𝜋𝑖𝜔𝑡𝜙(𝑡) 𝑑𝑡 = 0.

(Papoulis 1962 Eq I.47) shows
𝛿(𝑡) = lim

𝜔→∞

sin 𝜔𝑡
𝜋𝑡

.

To see this, it suffices to show

lim
𝜔→∞

∫
∞

−∞

sin 𝜔𝑡
𝜋𝑡

𝜙(𝑡) 𝑑𝑡 = 𝜙(0) (6)

for continuous, bounded variation 𝜙. Split the integral into three, the middle one an
interval (−𝜖, 𝜖) around 0. The left and right parts are zero by Riemann-Lebesgue. In the
middle interval 𝜙(𝑡) ≈ 𝜙(0) provided 𝜖 is small enough. Then

∫
𝜖

−𝜖

sin 𝜔𝑡
𝜋𝑡

𝜙(𝑡) 𝑑𝑡 ≈ 𝜙(0) ∫
𝜖

−𝜖

sin 𝜔𝑡
𝜋𝑡

𝑑𝑡 ≈ 𝜙(0) ∫
𝜖𝜔

−𝜖𝜔

sin 𝑡
𝜋𝑡

𝑑𝑡

(note that 𝑑𝑡/𝑡 is scale invariant Haar-measure on ℝ×). Since

∫
∞

−∞

sin 𝑥
𝜋𝑥

𝑑𝑥 = 1 (7)

the result follows. This integral is an application of contour integration applied to 𝑒𝑧/𝑧
along a half annulus sliced vertically that skirts round the origin, (Papoulis 1962 , II.57).

The highly suspect looking result

∫
∞

−∞
cos 𝜔𝑡 𝑑𝜔 = 2𝜋𝛿(𝑡)

can be interpreted to sensibly if the LHS is regarded as

lim
𝑊→∞

∫
𝑊

−𝑊
cos 𝜔𝑡 𝑑𝜔 = lim

𝑊→∞

2 sin 𝑅𝑡
𝑡

= 2𝜋𝛿(𝑡).

36

4.8 Approximate identities
Grafakos (2024) Section 1.9 describes that the “futile search” for 𝑓0 ∈ 𝐿1(ℝ) so that
𝑓0 ∗ 𝑓 = 𝑓 for all 𝑓 ∈ 𝐿1(ℝ) leads to the notion of approximate identities, a family of
functions 𝐾𝛿 on ℝ so that:

1. ∃𝑐 > 0 ∶ ‖𝐾𝛿‖𝐿1 ≤ 𝑐 ∀𝛿 > 0.
2. ∫

ℝ
𝐾𝛿(𝑦) 𝑑𝑦 = 1 ∀𝛿 > 0.

3. ∀𝛾 > 0 ∶ ∫
|𝑦|>𝛾

𝐾𝛿(𝑦) 𝑑𝑦 = 1 as 𝛿 → 0.

If 𝐾 is integrable with integral 1 then 𝐾𝛿(𝑥) = 𝐾(𝑥/𝛿)/𝛿 is an approximate identity.
𝐾(𝑥) = (𝜋(𝑥2 + 1))−1 is the Poisson kernel. For an approximate identity, 𝐾𝛿 ∗ 𝑓 → 𝑓 as
𝛿 → 0 in 𝐿𝑝, 1 ≤ 𝑝 < ∞, and if, in addition, 𝑓 is uniformly continuous in a neighborhood
of) then this is also true for 𝑝 = ∞. The proof of this is a bit of work and is key to
Fourier inversion. It uses the approximate identity

𝐾𝛿(𝑥) = 1
𝛿

𝑒−𝜋𝛿2𝑥2 .

4.9 The Shah Function
Recall Equation 6

lim
𝜔→∞

∫
∞

−∞

sin 𝑡
𝜋𝑡

𝜙(𝑡) 𝑑𝑡 = 𝜙(0)

and therefore
𝛿(𝑡) = lim

𝜔→∞

sin 𝜔𝑡
𝜋𝑡

The shah or sampling function is defined as

�𝑏(𝑡) = ∑
𝑘

𝛿(𝑡 − 𝑘𝑏).

It is like an equally likely selection from the integers! Terras (2013) says the name reflects
the graph, a series of spikes. It can be understood from Figure 24, which shows convergents
of the sum

𝑓(𝑡) = ∑
𝑘=−𝑛

𝑛 cos(2𝜋𝑘𝑡)

for 𝑛 = 1, … , 6. Each term adds two 𝛿 functions, per Equation 8.
fig, axs = plt.subplots(3, 2, figsize=(2 * 2, 3 * 1.5),

constrained_layout=True)
f0 = 1.
ts = np.linspace(-.5, 2.5, 201)
ys = np.ones_like(ts)
ylim = [-2, 12]
for i, ax in enumerate(axs.flat):

ys += 2 * np.cos(2 * np.pi * ts * f0 * (i + 1))
ax.plot(ts, ys, lw=1)
ax.axhline(0, lw=.25, c='k')
ax.axvline(0, lw=.25, c='k')

37

ax.set(ylim=ylim, xticklabels=["", "", "T", "2T"],
yticklabels=["", "", "5", "10"])

Move axes to cross at (0,0)
ax.spines['left'].set_position('zero')
ax.spines['bottom'].set_position('zero')

Remove top and right spines
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)

Ensure ticks appear correctly
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

T 2T

5

10

T 2T

5

10

T 2T

5

10

T 2T

5

10

T 2T

5

10

T 2T

5

10

Figure 24: The derivation of the Shah function, following (Brigham 1988, fig. 2.11).

38

The ft of 𝑓(𝑥) = cos(2𝜋𝜔𝑥) is (𝛿(𝑡 − 1) + 𝛿(𝑡 + 1))/2 because

̂𝑓(𝑡) = ∫
∞

−∞
𝑒−2𝜋𝑖𝑥𝑡 cos(2𝜋𝜔𝑥) 𝑑𝑥

= 1
2

∫
∞

−∞
𝑒−2𝜋𝑖𝑥𝑡(𝑒2𝜋𝑖𝜔𝑥 + 𝑒−2𝜋𝑖𝜔𝑥)) 𝑑𝑥

= 1
2

∫
∞

−∞
𝑒−2𝜋𝑖𝑥(𝑡−𝜔) + 𝑒−2𝜋𝑖𝑥(𝑡+𝜔) 𝑑𝑥

= 1
2

∫
∞

−∞
cos(2𝜋𝑥(𝑡 − 𝜔)) + cos(2𝜋𝑥(𝑡 + 𝜔)) 𝑑𝑥

= 1
2

(sin(2𝜋𝑥(𝑡 − 𝜔))
2𝜋(𝑡 − 𝜔)

∣
∞

−∞

+ sin(2𝜋𝑥(𝑡 + 𝜔))
2𝜋(𝑡 + 𝜔)

∣
∞

−∞

)

= 1
2

(lim
𝑅→∞

sin(2𝜋𝑅(𝑡 − 𝜔))
𝜋(𝑡 − 𝜔)

+ lim
𝑅→∞

sin(2𝜋𝑅(𝑡 + 𝜔))
𝜋(𝑡 + 𝜔)

)

= 1
2

(𝛿(𝑡 − 𝜔) + 𝛿(𝑡 + 𝜔))

(8)

using the fact that the function cos is even and sin is odd.

The ft of � is
̂�𝑏 = ∑

𝑘

̂𝛿(𝑡 − 𝑘𝑏) = 1
𝑏

�1/𝑏

Multiplying a distribution by � creates sampled distribution:

𝑓𝑏(𝑡) = 𝑓(𝑡) × �𝑏(𝑡) = ∑
𝑘

𝑝𝑘𝛿(𝑡 − 𝑘𝑏).

The sampled distribution has ft

̂𝑓𝑏 = 𝑓�𝑏 = ̂𝑓 ̂�𝑏 = 1
𝑏

̂𝑓 �1/𝑏.

Compare, second discretizing steps in Section 4.5.

4.10 Code
The code for FourierTools.invert is shown below. It reveals how the arguments are
selected when not passed explicitly. It is designed for loss distributions that usually start
at 0. The variable self refers to an object that knows the ch f and has a variable fz
providing the standard probability functions.

The effective range of 𝑋 is 𝑥range = 𝑥max − 𝑥min . The discretization bucket size is

𝑏 =
𝑥range

𝑛
= 𝑥max − 𝑥min

𝑛
. (9)

The highest sampled frequency is
𝑓max = 1

𝑏

39

since wavelength is the reciprocal of frequency (if you sample every 1/4 step, then you
sample four times per step). If 𝑋 is discrete and takes integer values, it is best to require
that 𝑥min and 𝑥max are integers and 𝑥max = 𝑥min + 𝑛, resulting in 𝑏 = 1. It is usually
preferable to input bs and let x_max fallout.
def invert(self, log2, x_min=0, bs=0, x_max=None, s=1e-17):

number of buckets
self.log2 = log2
n = 1 << log2
if x_min is None:

use quantile function if not given x_min
x_min = self.fz.ppf(s)

if bs == 0:
if self.discrete:

force bs = 1
x_max = x_min + n

else:
use quantile function is not given x_max
x_max = self.fz.isf(s) if x_max is None else x_max

else:
x_max = x_min + bs * n

x_range = x_max - x_min
discretization step
bs = x_range / n
highest sampling freq for inverting the FT is 1 / bs
f_max = 1 / bs
sample the FT; using real fft, only need half the range
self._ts = np.linspace(0, 1/2, n // 2 + 1) * f_max
apply ft
self._fourier = self.fourier_transform(self._ts)
invert using real IFFT routine
probs = irfft(self._fourier)
roll back to put x_min in the correct spot
if x_min != 0:

probs = np.roll(probs, -int(x_min / bs))
add index of implied x values
df = pd.DataFrame({

'x': np.linspace(x_min, x_max, n, endpoint=False),
'p': probs}).set_index('x')

return df

5 More Examples
Because I find Fourier techniques so magical I can’t resist giving more examples. The
new lessons are only that the scipy.special implementation of 1𝐹1 is very poor and
that fts don’t like discontinuities, see the uniform example, Section 5.5. Otherwise, they
all confirm the relationship between the ch f for each distribution and its scipy.stats

40

implementation, and that the algorithm in Section 1 works!

5.1 Binomial
The binomial has two shape parameters.
n, p = 64, .25
fz = ss.binom(n, p)
log2 = 7
ft_obj = FourierTools(

chf=lambda t: (1 - p + p * np.exp(1j * t)) ** n,
fz=fz

)
ft_obj.invert(log2=log2, x_min=0, x_max=0)
print(ft_obj.describe())
ft_obj.compute_exact(calc='survival')
ft_obj.plot()

0 50 100
Outcome, x

0.00

0.05

0.10

Density
Fourier
exact

0 50 100
Outcome, x

10 17

10 13

10 9

10 5

10 1

103
Log density

Fourier
exact

0 50 100
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.00 0.25 0.50
frequency

10 16

10 11

10 6

10 1

A
m

pl
itu

de
 |f

t|

Amplidude

0 50 100
Outcome, x

10 17

10 13

10 9

10 5

10 1

log sf and cdf

20

10

0

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 25: Binomial distribution example.

41

5.2 Normal
The normal has no shape parameters. Scale and location are handled automatically by
adjusting the ft.
mu, sigma = 0., 2.
ft_obj = FourierTools(

chf=lambda t: np.exp(-(t**2) / 2),
fz=ss.norm(loc=mu, scale=sigma)

)
ft_obj.invert(log2=10, x_min=-12., x_max=12.)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

10 0 10
Outcome, x

0.00

0.05

0.10

0.15

0.20
Density

Fourier
exact

10 0 10
Outcome, x

10 11

10 8

10 5

10 2

Log density

Fourier
exact

10 0 10
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 10 20
frequency

10 251

10 184

10 117

10 50

A
m

pl
itu

de
 |f

t|

Amplidude

10 0 10
Outcome, x

10 11

10 8

10 5

10 2

101
log sf and cdf

0.050

0.025

0.000

0.025

0.050

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 26: Normal distribution example.

42

5.3 More gamma distribution examples
5.3.1 Shape 𝛼 = 2 with a shift

This example models 𝑋 − 100 where 𝑋 ∼ gamma with 𝛼 = 2. Note aliasing on the left
as the right tail wraps around.
alpha = 2.
ft_obj = FourierTools(

chf=lambda t: (1 - 1j * t) ** -alpha,
fz=ss.gamma(alpha, loc=-100)

)
ft_obj.invert(log2=10, x_min=-105, bs=1/64)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

105 100 95 90
Outcome, x

0.0

0.1

0.2

0.3

Density
Fourier
exact

105 100 95 90
Outcome, x

10 17

10 13

10 9

10 5

10 1

Log density

Fourier
exact

105 100 95 90
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 10 20 30
frequency

10 4

10 3

10 2

10 1

100

A
m

pl
itu

de
 |f

t|

Amplidude

105 100 95 90
Outcome, x

10 17

10 13

10 9

10 5

10 1

log sf and cdf

0

200

400

600

800

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 27: Gamma distribution with shape equal 2 shifted left by 100.

43

5.3.2 Shape 3 with shifting and scaling

alpha = 3
ft_obj = FourierTools(

chf=lambda t: (1 - 1j * t) ** -alpha,
fz=ss.gamma(alpha, loc=-100, scale=50)

)
ft_obj.invert(log2=12, x_min=-105, bs=1/8)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

0 200 400
Outcome, x

0.000

0.002

0.004

Density
Fourier
exact

0 200 400
Outcome, x

10 6

10 5

10 4

10 3

10 2
Log density

Fourier
exact

0 200 400
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 2 4
frequency

10 8

10 6

10 4

10 2

100

A
m

pl
itu

de
 |f

t|

Amplidude

0 200 400
Outcome, x

10 6

10 4

10 2

100

log sf and cdf

0

1000

2000

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 28: Gamma distribution with shape equal 3 shifted left by 100 and scaled by 50.

44

5.3.3 Centered gamma

alpha = 100
loc = -100
ft_obj = FourierTools(

chf=lambda t: (1 - 1j * t) ** -alpha,
fz=ss.gamma(alpha, loc=loc)

)
ft_obj.invert(log2=10, x_min=loc, bs=1/4)
print(ft_obj.describe())
ft_obj.compute_exact(calc='survival')
ft_obj.plot()

100 0 100
Outcome, x

0.00

0.01

0.02

0.03

0.04
Density

Fourier
exact

100 0 100
Outcome, x

10 17

10 13

10 9

10 5

10 1
Log density

Fourier
exact

100 0 100
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 1 2
frequency

10 91

10 66

10 41

10 16

A
m

pl
itu

de
 |f

t|

Amplidude

100 0 100
Outcome, x

10 17

10 13

10 9

10 5

10 1

log sf and cdf

0

250

500

750

1000

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 29: Gamma distribution with shape equal 100 centered by shifted left by 100.

45

5.3.4 Gamma with bad aliasing

This example uses an interval 𝐼 = [0, 𝑃) that is too small to contain the bulk of the
support. The problem is that 𝑃 = 𝑛𝑏 is too small; this is even a problem if 𝑛 is very large
(with 𝑏 correspondingly small). The top left plot in Figure 30 show aliasing across the
entire range; Figure 31 shows it is largely accounted for by the two translated [𝑃 , 2𝑃)
and [2𝑃 , 3𝑃).
alpha = 2
ft_obj = FourierTools(

chf=lambda t: (1 - 1j * t) ** -alpha,
fz=ss.gamma(alpha, loc=0)

)
ft_obj.invert(log2=6, x_min=0, x_max=3)
print(ft_obj.describe())
ft_obj.compute_exact(calc='survival')
ft_obj.plot()

0 1 2
Outcome, x

0.0

0.1

0.2

0.3

0.4

Density
Fourier
exact

0 1 2
Outcome, x

10 1

100

101
Log density

Fourier
exact

0 1 2
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0.0 2.5 5.0 7.5 10.0
frequency

10 3

10 2

10 1

100

A
m

pl
itu

de
 |f

t|

Amplidude

0 1 2
Outcome, x

10 1

100

101
log sf and cdf

3

2

1

0

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 30: Gamma distribution with shape equal 2 computed over too thin a range.

ft_obj.plot_wraps([1,2], add_tail=True);

46

0 1 2 3
Outcome, x

0.0

0.1

0.2

0.3

0.4

D
en

sit
y

Cumulative aliasing

0 6
Outcome, x

0.0

0.1

0.2

0.3

0.4

D
en

sit
y

Incremental aliasing
Fourier
1
1

2
2
exact

0 1 2 3
Outcome, x

10 2

10 1

Lo
g

de
ns

ity

Cumulative - log scale

Fourier
1

2
exact

0 6
Outcome, x

10 3

10 2

10 1
Lo

g
de

ns
ity

Incremental - log scale

Figure 31: Sources of aliasing for Figure 30.

47

5.4 Inverse Gaussian

� = 2.
fz = ss.invgauss(�, loc=10)
ft_obj = FourierTools(

chf=lambda t: np.exp((1 - np.sqrt(1 - 2 * 1j * �**2 * t)) / �),
fz=fz

)
ft_obj.invert(log2=16, x_min=0, x_max=256)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

0 100 200
Outcome, x

0.0

0.2

0.4

0.6

Density
Fourier
exact

0 100 200
Outcome, x

10 17

10 13

10 9

10 5

10 1

103
Log density

Fourier
exact

0 100 200
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 50 100
frequency

10 10

10 7

10 4

10 1

A
m

pl
itu

de
 |f

t|

Amplidude

0 100 200
Outcome, x

10 17

10 13

10 9

10 5

10 1

log sf and cdf

8000

6000

4000

2000

0

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 32: Inverse Gaussian distribution example.

48

5.5 Uniform
Figure 33, top left, shows the ft doesn’t like discontinuities. The overshoot is known as
Gibbs Phenomenon. It is an unavoidable problem, reflecting the difficulty of approximating
a discontinuous function with a series of continuous functions. Note the 𝑦 axis scale in
the first plot!
fz = ss.uniform()
ft_obj = FourierTools(

chf=lambda t: -1j * (np.exp(1j * t) - 1),
fz=fz

)
ft_obj.invert(log2=10, x_min=-1, x_max=2)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()
ft_obj.last_fig.axes[1].set(ylim=[1e-10, 1e3]);

1 0 1
Outcome, x

200

0

200

Density

Fourier
exact

1 0 1
Outcome, x

10 10

10 7

10 4

10 1

102

Log density

Fourier
exact

1 0 1
Outcome, x

2

0

2

sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 50 100 150
frequency

10 15

10 11

10 7

10 3

101

A
m

pl
itu

de
 |f

t|

Amplidude

1 0 1
Outcome, x

10 17

10 13

10 9

10 5

10 1

log sf and cdf

0

1

2

3

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 33: Inversion of a uniform distribution with Gibbs ringing in the second plot.

49

https://en.wikipedia.org/wiki/Gibbs_phenomenon

5.6 Beta
The beta distribution turns out to be tricky because there was an error in 1𝐹1 in scipy
see Issue #20797. It was fixed in a later release, however, even after fix the new version is
not that accurate for complex arguments. To avoid jumps we work with the beta shown
in Figure 34, using parameters 𝑎 = 5 and 𝑏 = 12.
a = 5
b = 12
fz = ss.beta(a, b)
fig, ax = plt.subplots(1, 1, figsize=(2, 1.75), constrained_layout=True)
x = np.linspace(0, 1, 101)
ax.plot(-np.diff(fz.sf(x)))
ax.set(xlabel='x', ylabel='density', title='Beta(5, 12) density');

0 50 100
x

0.00

0.02

de
ns

ity

Beta(5, 12) density

Figure 34: Beta density with no jumps at domain endpoints.

The mpmath implementation of the hypergeometric function that is needed for the beta ch
f turns out to be more reliable than the scipy.special’s.
from mpmath import hyp1f1
def beta_chf(a, b, t):

"""Compute beta chf at t. Includes the 1j factor."""
if isinstance(t, (float, int)):

return complex(hyp1f1(a, a + b, 1j * t))
else:

return np.array([complex(hyp1f1(a, a + b, 1j * z)) for z in t])

Figure 35 shows the fit.
a = 5.
b = 12.
fz = ss.beta(a, b, loc=0, scale=1)
log2 = 12
print(fz.stats(), a / (a+b))
ft_obj = FourierTools(

chf=lambda t: beta_chf(a, b, t),
fz=fz

)
ft_obj.invert(log2=log2, x_min=-1.5, x_max=2.5)

50

https://github.com/scipy/scipy/issues/20797

print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

(0.29411764705882354, 0.011534025374855825) 0.29411764705882354

1 0 1 2
Outcome, x

0

1

2

3

Density
Fourier
exact

1 0 1 2
Outcome, x

10 17

10 13

10 9

10 5

10 1

Log density
Fourier
exact

1 0 1 2
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 200 400
frequency

10 10

10 7

10 4

10 1

A
m

pl
itu

de
 |f

t|

Amplidude

1 0 1 2
Outcome, x

10 17

10 13

10 9

10 5

10 1

log sf and cdf

7.5

5.0

2.5

0.0

2.5

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 35: Inverting beta distribution using mpmath to compute the ch f.

51

5.7 Laplace
The asymmetric Laplace distribution takes 𝜅 as shape.
� = 1.2
fz = ss.laplace_asymmetric(�)
log2 = 16
ft_obj = FourierTools(

chf=lambda t: 1 / ((1 + 1j * t * �) * ((1 - 1j * t / �))),
fz=fz

)
ft_obj.invert(log2=log2, x_min=-30, x_max=40)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

20 0 20
Outcome, x

0.0

0.2

0.4

Density
Fourier
exact

20 0 20
Outcome, x

10 17

10 13

10 9

10 5

10 1

Log density
Fourier
exact

20 0 20
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 100 200 300 400
frequency

10 6

10 4

10 2

100

A
m

pl
itu

de
 |f

t|

Amplidude

20 0 20
Outcome, x

10 17

10 13

10 9

10 5

10 1

log sf and cdf

0.00

0.05

0.10

0.15

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 36: Asymmetric Laplace distribution example.

52

5.8 Logistic
The logistic distributions has no shape parameters.
fz = ss.logistic(loc=0, scale=1)
log2 = 16
ft_obj = FourierTools(

chf=lambda t: np.where(t==0, 1, np.pi * t / np.sinh(np.pi * t)),
fz=fz

)
ft_obj.invert(log2=log2, x_min=-25, x_max=25)
print(ft_obj.describe())
ft_obj.compute_exact()
ft_obj.plot()

20 0 20
Outcome, x

0.0

0.1

0.2

Density
Fourier
exact

20 0 20
Outcome, x

10 14

10 11

10 8

10 5

10 2

Log density

Fourier
exact

20 0 20
Outcome, x

0.00

0.25

0.50

0.75

1.00
sf and cdf

cdf Fourier
cdf exact
sf Fourier
sf exact

1 0 1
real(ft)

1.0

0.5

0.0

0.5

1.0

im
ag

(ft
)

Fourier transform
ft
ft / |ft|

0 200 400 600
frequency

10 253

10 185

10 117

10 49

A
m

pl
itu

de
 |f

t|

Amplidude

20 0 20
Outcome, x

10 14

10 10

10 6

10 2

log sf and cdf

0.050

0.025

0.000

0.025

0.050

Ph
as

e /
 2

Amplitude and phase
phase, unwrapped
phase, wrapped

Figure 37: Logistic distribution example.

Bibliography
Brigham, E. O. (1988). The fast fourier transform and its applications. Prentice Hall.
Grafakos, L. (2008). Classical fourier analysis (2nd ed.). Springer.
Grafakos, L. (2009). Modern fourier analysis. Springer.
Grafakos, L. (2024). Fundamentals of fourier analysis. Springer.
Hewitt, E., & Ross, K. A. (2012). Abstract harmonic analysis: Volume i: Structure of

topological groups integration theory group representations (Vol. 115). Springer Science
& Business Media.

Jørgensen, B. (1987). Exponential Dispersion Models. Journal of the Royal Statistical
Society Series B, 49(2), 127–162.

Körner, T. W. (2022). Fourier analysis. Cambridge university press.
McCullagh, P., & Nelder, J. A. (2019). Generalized linear models. Routledge.

53

McKean, H. (2014). Probability: The classical limit theorems. Cambridge University
Press.

Mildenhall, S. (2024). Aggregate: fast, accurate, and flexible approximation of compound
probability distributions. Annals of Actuarial Science, 1–40. https://doi.org/10.1017/
S1748499524000216

Mittnik, S., Doganoglu, T., & Chenyao, D. (1999). Computing the Probability Density
Function of the Stable Paretian Distribution. Mathematical and Computer Modelling,
29, 235–240.

Nolan, J. P. (2020). Univariate stable distributions. Springer Series in Operations
Research and Financial Engineering, 10, 978–3.

Papoulis, A. (1962). The fourier integral and its applications. McGraw-Hill, New York.
Terras, A. (2013). Harmonic analysis on symmetric spaces—euclidean space, the sphere,

and the poincare upper half-plane. Springer Science & Business Media.
Wang, L., & Zhang, J.-H. (2008). Simpson’s rule based FFT method to compute densities

of stable distribution. In The second international symposium on optimization and
systems biology (pp. 381–388). Lijang, China.

54

https://doi.org/10.1017/S1748499524000216
https://doi.org/10.1017/S1748499524000216

	Introduction
	Algorithm
	Algorithm to Invert a Characteristic Function Using FFTs

	Errors
	Core examples
	Python set up
	Basic example, Poisson distribution
	Poisson with aliasing
	Poisson with extreme aliasing
	Poisson with large mean
	Gamma with frequency-domain truncation error
	Stable distributions
	Tweedie with Aggregate
	Compound Poisson with discrete severity
	Unwrapping with Aggregate

	Technical Background
	Context and literature
	Characteristic functions and Fourier transforms
	Example Fourier transform
	Continuous, discrete and fast transforms
	Sampling: from continuous to discrete transforms
	Simpson's Rule
	Dirac delta functions
	Approximate identities
	The Shah Function
	Code

	More Examples
	Binomial
	Normal
	More gamma distribution examples
	Shape \alpha=2 with a shift
	Shape 3 with shifting and scaling
	Centered gamma
	Gamma with bad aliasing

	Inverse Gaussian
	Uniform
	Beta
	Laplace
	Logistic

	Bibliography

