Knowledge is the Only Good
  • About

Extreme Tails of the Normal Distribution

notes
probability
Estimating extreme quantiles of the normal distribution.
Author

Stephen J. Mildenhall

Published

2024-06-22

Approximating Tails of the Normal Distribution

Feller vol 1. Chapter VII Lemma 2 page 175 gives \[ (x^{-1}-x^{-3})\phi(x) < 1-\Phi(x) < x^{-1}\phi(x). \]

See also Abramowitz and Stegun asymptotic series 26.2.12 \[ \Phi(x) = \frac{\phi(x)}{x}\left( 1-\frac{1}{x^2} + \frac{1\cdot 3}{x^4} +\cdots +\frac{(-1)^n1\cdot 3\cdot \dots \cdot (2n-1)}{x^{2n}} \right). \]

Using \(\log\) for log to base 10 we get \(\log(\phi(x)) = -\log(\sqrt{2\pi}) - \displaystyle\frac{x^2}{2\ln(10)}\). The value \(\ln(10)=2.302585\) and, miraculously, \(\log(\sqrt{2\pi})=0.399090\). Therefore \[ \log(1-\Phi(x)) \approx -0.399 - \frac{x^2}{2\cdot 2.302585} - \log(x) \approx -0.4 - \frac{x^2}{4.6} - \log(x). \]

The table below compares various estimates for \(\log(1-\Phi(x))\).

\(-\log(1-\Phi(x))\) compared to approximations.
\(x\) AS Table 26.2 \(\phi(x)/x\) \(0.4-x^2/4.6-\log(x)\) \((x^{-1}-x^{-3})\phi(x)\)
2 1.64302 1.56871 1.57060 1.69365
3 2.86970 2.83054 2.83364 2.88169
4 4.49933 4.47551 4.48032 4.50353
5 6.54265 6.52674 6.53375 6.54447
6 9.00586 8.99454 9.00424 9.00678
7 11.89285 11.88440 11.89727 11.89336
8 15.20614 15.19960 15.21613 15.20644
9 18.94746 18.94226 18.96294 18.94765
10 23.11805 23.11381 23.13913 23.11818
15 50.43522 50.43331 50.48913 50.43524
20 88.56010 88.55902 88.65755 88.56010
25 137.51475 137.51406 137.66751 137.51475
50 544.96634 544.96616 545.57723 544.96634
100 2,173.87154 2,173.87150 2,176.31304 2,173.87154
200 8,688.58977 8,688.58976 8,698.35320 8,688.58977
500 54,289.90830 54,289.90830 54,350.92506 54,289.90830

Hence the famous Goldman Sachs CFO quote about 25 deviations from the mean “several days in a row” (Kevin Dowd et al “How Unlucky is 25-sigma?”) is ridiculous.

Stephen J. Mildenhall. License: CC BY-SA 2.0.

 

Website made with Quarto